Refine Your Search

Topic

Search Results

Standard

Overpressurization Release Devices

2024-01-16
WIP
ARP1322D
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and qualification test recommendations for aircraft wheel overpressurization release devices used with tubeless aircraft tires to protect from possible explosive failure of the contained inflation chamber due to overinflation. Devices of this type provide a means, but not the only means, for showing compliance to Subsection 25.731(d) of Part 25 of Title 14 of the Code of Federal Regulations. Devices of this type will not protect against flash fire explosive conditions within the inflation chamber which may occur due to extremely overheated brakes or spontaneous combustion caused by a foreign substance within the inflation chamber. To help protect against this condition, nitrogen (N2) or other inert gas should be used for inflation.
Standard

Unique Wheel and Brake Designs

2022-09-08
CURRENT
AIR5388
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5A Committee and is presented to document unique design approaches used for aircraft wheels and brakes.
Standard

Maintainability Recommendations for Aircraft Wheel and Hydraulically Actuated Brake Design

2022-07-13
WIP
ARP813D

This SAE Aerospace Recommended Practice (ARP) recommends the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on other factors, such as, cost, weight, reliability, and compatibility with other systems should be weighed before the incorporation of any of these maintainability features into the design.

Standard

Aircraft Brake Temperature Monitoring

2021-10-28
CURRENT
ARP6812
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the function, design, construction, and testing of an on-aircraft Brake Temperature Monitoring System (BTMS), sometimes referred to as a Brake Temperature Indication System (BTIS). NOTE: This ARP does not address: Cockpit ergonomics and Aircraft operating procedures. Various handheld methods of temperature sensing or readouts, as these are not associated with transport aircraft during normal operation. Temperature sensitive paints as a means to indicate exceedance of a landing gear axle temperature threshold due to brake temperature.
Standard

Minimum Environmental Performance Standard for Parts 23, 25, 27, and 29 Aircraft Wheels Brakes, and Wheel and Brake Assemblies

2021-04-27
WIP
AS6961
This SAE Aerospace Standard (AS) prescribes the Minimum Performance Standards (MPS) for environmental conditions that wheel, brake, and wheel and brake assemblies to be used on aircraft certificated under 14 CFR Parts 23, 25, 27, and 29. The environmental requirements in this document shall be used in conjunction with other MPS defined in Technical Standard Orders for the applicable equipment.
Standard

Disposition of Damaged Wheels Involved in Accidents/Incidents

2020-09-17
CURRENT
ARP5600
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Standard

Recommended Wheel Tie Bolt Preload Procedure

2020-09-17
CURRENT
ARP5481A
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2020-09-16
CURRENT
AIR5567A
The scope of the test method is to provide stakeholders including fluid manufacturers, airport operators, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating environment.
Standard

Valve, Inflation, Aircraft Wheel

2019-11-14
CURRENT
AS6817
This SAE Aerospace Standard (AS) defines the configuration of aircraft wheel inflation valve assemblies, including required tolerances, materials, and appropriate finishes.
Standard

Maintainability Recommendations for Aircraft Wheel and Hydraulically Actuated Brake Design

2019-02-15
CURRENT
ARP813C
This SAE Aerospace Recommended Practice (ARP) recommends the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on other factors, such as, cost, weight, reliability, and compatibility with other systems should be weighed before the incorporation of any of these maintainability features into the design.
Standard

Use of Structural Carbon Heat Sink Brakes on Aircraft

2016-11-15
CURRENT
AIR1934A
The purpose of this document is to relate areas where carbon brake technology may differ from traditional steel brake technology in design and performance. Carbon brakes have been used on military aircraft for many years and are now frequently used on newly commercial developed aircraft. This document presents some of the lessons learned.
Standard

Carbon Brake Contamination and Oxidation

2016-04-12
CURRENT
AIR5490A
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide information on industry practices for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-12-04
WIP
AS6289
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This test is designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-03-11
WIP
AIR5567B
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
X