Refine Your Search

Topic

Search Results

Standard

Landing Gear Structures and Mechanisms

2018-06-03
CURRENT
ARP1311D
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes and other landing gear systems) for all types and models of civil and military aircraft. All axles, wheel forks, links, arms, mechanical and gas/oil shock struts, downlock and uplock assemblies, braces, trunnion beams, and truck beams, etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed and validated in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, damping, etc.) should also be included in this coverage. System level, non-structural components such as retraction/extension valves, controllers, secondary structure and mechanisms in the airframe (e.g., manual release mechanisms, slaved doors) as well as equipment that is located in the cockpit are not addressed in this ARP.
Standard

Tail Bumpers for Piloted Aircraft

2017-07-14
CURRENT
ARP1107C
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

Development and Qualification of Composite Landing Gears

2010-10-07
CURRENT
AIR5552
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
Standard

Crashworthy Landing Gear Design

2010-05-04
CURRENT
AIR4566A
The intent of this SAE Aerospace Information Report (AIR) is to document the design requirements and approaches for the crashworthy design of aircraft landing gear. This document covers the field of commercial and military airplanes and helicopters. This summary of crashworthy landing gear design requirements and approaches may be used as a reference for future aircraft.
Standard

Landing Gear Structures and Mechanisms

2009-02-04
HISTORICAL
ARP1311C
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes and other landing gear systems) for all types and models of civil and military aircraft. All axles, wheel forks, links, arms, mechanical and gas/oil shock struts, downlock and uplock assemblies, braces, trunnion beams, and truck beams etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed and validated in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, damping, etc.) should also be included in this coverage. System level, non-structural components such as retraction/extension valves, controllers, secondary structure and mechanisms in the airframe (e.g., manual release mechanisms, slaved doors) as well as equipment that is located in the cockpit are not addressed in this ARP.
Standard

Design, Development and Test Criteria - Solid State Proximity Switches/Systems for Landing Gear Applications

2001-10-01
HISTORICAL
AIR1810B
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

Tail Bumpers for Piloted Aircraft

2001-10-01
HISTORICAL
ARP1107B
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

Aircraft Landing Gear

1999-06-01
HISTORICAL
ARP1311B
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes) for all types and models of civil and military aircraft including all aircraft with vertical landing and crash attenuation requirements. All axles, wheel forks, axle beams, links, arms, mechanical and nitrogen/oil energy absorbers, lock assemblies, braces, trunnion beams, and truck beams etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, and/or damping) should also be included in this coverage.
Standard

Landing Gear Switch Selection Criteria

1999-04-01
CURRENT
AIR5024
The scope of this document is to discuss the differences between electromechanical and proximity position sensing devices when used on landing gears. It also contains information, which may be helpful, when applying either type of technology after the selection has been made. The purpose is to help the designer make better choices when selecting a position-sensing device. Once that choice has been made, this document includes information to improve the reliability of new or current designs. It is not intended to replace recommendations from sensor manufacturers or actual experience, but to provide a set of general guidelines.
Standard

Verification of Landing Gear Design Strength

1997-03-01
HISTORICAL
AIR1494A
Verification of landing gear design strength is accomplished by dynamic and static test programs. This is essentially a verification of the analytical procedures used to design the gear. An industry survey was recently conducted to determine just what analysis and testing are currently being applied to landing gear. Timing in relation to first flight of new aircraft was also questioned. Opinions were solicited from designers of the following categories and/or types of aircraft: a Military - Large Land Based (Bomber) b Military - Small Land Based (Fighter) c Military - Carrier Based (Navy) d Military - Helicopter (Large) e Military - Helicopter (Small-attack) f Commercial - Large (Airliner) g Commercial - Small (Business) h USAF (WPAFB) - Recommendations It is the objective of this AIR to present a summary of these responses. It is hoped that this summary will be useful to designers as a guide and/or check list in establishing criteria for landing gear analysis and test.
Standard

Aircraft Nosewheel Steering Systems

1997-03-01
HISTORICAL
ARP1595A
This document provides recommended practices for the design, development, and verification testing of aircraft nosewheel steering (NWS) systems.
Standard

Landing Gear Stability

1995-03-01
CURRENT
AIR4894
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
Standard

AIRCRAFT LANDING GEAR

1995-01-01
HISTORICAL
ARP1311A
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes) for all types and models of civil and military aircraft applications. All axles, wheel forks, axle beams, links, arms, mechanical and air-oil energy absorbers braces, lock assemblies, trunnion beams, etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure should be designed in accordance with this document. Hydraulic actuators (retraction, steering, positioning, and/or damping) should also be included in this coverage. It should be the responsibility of the airframe manufacturer to determine the compatibility of these needs with the aircraft and to specify requirements in excess of these minima where appropriate.
Standard

Crashworthy Landing Gear Design

1992-07-01
HISTORICAL
AIR4566
The intent of this SAE Aerospace Information Report (AIR) is to document the design requirements and approaches for the crashworthy design of aircraft landing gear. This document covers the field of commercial and military airplanes and helicopters. This summary of crashworthy landing gear design requirements and approaches may be used as a reference for future aircraft.
Standard

TAIL BUMPERS FOR PILOTED AIRCRAFT

1991-06-11
HISTORICAL
ARP1107A
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

Mechanical Switch Usage for Landing Gear Applications

1989-10-04
CURRENT
AIR4077
This Aerospace Information Report (AIR) will examine considerations relative to the use of mechanical switches on aircraft landing gear, and present "lessons learned" during the period that these devices have been used.
X