Refine Your Search

Topic

Search Results

Standard

Guide to Certification of Aircraft in a High-Intensity Radiated Field (HIRF) Environment

2020-01-28
WIP
ARP5583B
This guide provides detailed information, guidance, and methods related to the Federal Aviation Administration Advisory Circular (AC)/Joint Airworthiness Authorities Advisory Material Joint (AMJ) 20-XXX, "Certification of Aircraft Electrical/Electronic Systems for Operation in the High Intensity Radiated Fields (HIRF) Environment" (draft). The AC/AMJ provides acceptable means, but not the only means, of compliance with Parts 23, 25, 27, and 29 of the Federal Aviation Regulations (FAR)/Joint Aviation Regulations (JAR) to prevent hazards to aircraft electrical and electronic systems due to HIRF produced by external transmitters. This guide is neither mandatory nor regulatory in nature and does not constitute a regulation or legal interpretation of the regulation. The information in this guide represents a collection of best engineering practices that have been used to certify aircraft HIRF protection.
Standard

Guide to Civil Aircraft Electromagnetic Compatibility (EMC)

2017-10-25
CURRENT
ARP60493
This guide provides detailed information, guidance, and methods for demonstrating electromagnetic compatibility (EMC) on civil aircraft. This guide addresses aircraft EMC compliance for safety and functional performance of installed electrical and electronic systems. The EMC guidance considers conducted and radiated electromagnetic emissions and transients generated by the installed electrical and electronic systems which may affect other installed electrical and electronic systems on the aircraft. Application of appropriate electrical and electronic equipment EMC requirements are discussed. Methods for aircraft EMC tests and analysis are described. This guide does not address aircraft compatibility with the internal electromagnetic environments of portable electronic devices (PED) or with the external electromagnetic environments, such as high-intensity radiated fields (HIRF), lightning, and precipitation static.
Standard

Stripline Test Method to Characterize the Shielding Effectiveness of Conductive EMI Gaskets up to 40 GHz

2016-02-19
CURRENT
ARP6248
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI conductive gasket materials and EMI conductive gaskets. Depending on the materials used for the construction of the measuring setup, the EMI conductive gaskets can be characterized against various joint surfaces. This standard will directly provide shielding effectiveness values up to 40 GHz, and will also be applicable for small samples of conductive EMI gaskets.
Standard

Control Plan/Technical Construction File

2013-03-25
CURRENT
ARP935B
This document contains a "sample" Control Plan with explanations as to the intended content of various sections. It also can serve as a sample technical construction file as specified by the European EMC Directive.
Standard

Electromagnetic Compatibility Control Requirements Systems

2013-03-25
CURRENT
ARP4242A
This SAE Aerospace Recommended Practice (ARP) establishes overall system electromagnetic compatibility (EMC) control requirements. EMC includes the following: a Electromagnetic Environmental Effects (E3) b Electrostatic Discharge (ESD) c Electromagnetic Interference (EMI) d Electromagnetic Vulnerability (EMV) e Electromagnetic Pulse (EMP) f Hazards of Electromagnetic Radiation to Ordnance (HERO) g Hazards of Electromagnetic Radiation to Personnel (HERP) h Hazards of Electromagnetic Radiation to Fuels (HERF) i High Intensity Radiated Fields (HIRF) j Lightning Protection k Static Electricity I TEMPEST This document is intended to be used for the procurement of land, sea, air, or space systems by any procurement activity. Tailoring of specific requirements is necessary and Appendix A has been provided for guidance.
Standard

Electromagnetic Interference Measurement Antennas; Standard Calibration Method

2012-04-06
WIP
ARP958E
This SAE Aerospace Recommended Practice (ARP) outlines a standard method for the checkout and calibration of electromagnetic interference measurement antennas. Its primary application is for use when measuring a source 1 m from the antenna in a shield room versus a source at a greater distance (far field). This is the typical distance used in performing military EMC testing. Thus, this is a method of calibration. Shield room characteristics are not considered. It does not address an unknown distributed source. Yet it is close to reality since it is based on another antenna that represents a distributed source. This document presents a technique to determine antenna factors for antennas used primarily in performing measurements in accordance with 2.1 and 2.2. The purpose of Revision B is to include the calibration of other antennas, such as small loop antennas that are also specified for use in these same references.
Standard

Alternative (Ecological) Method for Measuring Electronic Product Immunity to External Electromagnetic Fields

2003-07-28
CURRENT
ARP5889
This method is used to define the immunity of electric and electronic apparatus and equipment (products) to radiated electromagnetic (EM) energy. This method is based on injecting the calibrated radio frequency currents (voltages) into external conductors and/or internal circuits of the product under test, measuring the strength of the EM field generated by this product and evaluating its immunity to the external EM field on the basis of the data obtained. The method can be utilized only when it is physically possible to connect the injector to the conductors and/or circuits mentioned before.
Standard

Guide to Certification of Aircraft in a High Intensity Radiated Field (HIRF) Environment

2003-01-11
HISTORICAL
ARP5583
This guide provides detailed information, guidance, and methods related to the Federal Aviation Administration Advisory Circular (AC)/Joint Airworthiness Authorities Advisory Material Joint (AMJ) 20-XXX, "Certification of Aircraft Electrical/Electronic Systems for Operation in the High Intensity Radiated Fields (HIRF) Environment" (draft). The AC/AMJ provides acceptable means, but not the only means, of compliance with Parts 23, 25, 27, and 29 of the Federal Aviation Regulations (FAR)/Joint Aviation Regulations (JAR) to prevent hazards to aircraft electrical and electronic systems due to HIRF produced by external transmitters. This guide is neither mandatory nor regulatory in nature and does not constitute a regulation or legal interpretation of the regulation. The information in this guide represents a collection of best engineering practices that have been used to certify aircraft HIRF protection.
Standard

Electromagnetic Compatibility Control Requirements Systems

1999-08-01
HISTORICAL
ARP4242
This SAE Aerospace Recommended Practice (ARP) establishes overall system electromagnetic compatibility (EMC) control requirements. EMC includes the following: a Electromagnetic Environmental Effects (E3) b Electrostatic Discharge (ESD) c Electromagnetic Interference (EMI) d Electromagnetic Vulnerability (EMV) e Electromagnetic Pulse (EMP) f Hazards of Electromagnetic Radiation to Ordnance (HERO) g Hazards of Electromagnetic Radiation to Personnel (HERP) h Hazards of Electromagnetic Radiation to Fuels (HERF) i High Intensity Radiated Fields (HIRF) j Lightning Protection k Static Electricity l TEMPEST This document is intended to be used for the procurement of land, sea, air, or space systems by any procurement activity. Tailoring of specific requirements is necessary and Appendix A has been provided for guidance.
Standard

Electromagnetic Interference Measurement Antennas; Standard Calibration Method

1999-03-01
CURRENT
ARP958D
This SAE Aerospace Recommended Practice (ARP) outlines a standard method for the checkout and calibration of electromagnetic interference measurement antennas. Its primary application is for use when measuring a source 1 m from the antenna in a shield room versus a source at a greater distance (far field). This is the typical distance used in performing military EMC testing. Thus, this is a method of calibration. Shield room characteristics are not considered. It does not address an unknown distributed source. Yet it is close to reality since it is based on another antenna that represents a distributed source. This document presents a technique to determine antenna factors for antennas used primarily in performing measurements in accordance with 2.1 and 2.2. The purpose of Revision B is to include the calibration of other antennas, such as small loop antennas that are also specified for use in these same references.
Standard

Emc Antennas and Antenna Factors: How to Use Them

1999-01-01
CURRENT
AIR1509
This AIR discusses the use and application of EMC antennas and antenna factors. The relationships between antenna gain, antenna factor, power density (W/m2), and field strength (V/m) are discussed. Some examples of their use are given. Illustrations of commercially available EMC antennas commonly used in performing EMI measurements are included. In addition to the illustrations, the antenna factors, frequency ranges, typical uses (applications), and the manufacturers of these antennas are also listed.
Standard

Methods of Achieving Electromagnetic Compatibility of Gas Turbine Engine Accessories, for Self-Propelled Vehicles

1998-12-01
CURRENT
AIR1425A
This SAE Aerospace Information Report (AIR) is a description of methods to be employed to achieve Electromagnetic Compatibility (EMC) of gas turbine engine accessories. Its primary objectives are to aid those system designers of gas turbine assemblies who are employing commercial accessories, which are not always EMC designed, and to outline methods of achieving EMC employing readily available test instrumentation.
Standard

Cabling Guidelines for Electromagnetic Compatibility

1998-12-01
CURRENT
AIR1394A
These cable practice recommendations tend toward design guidance rather than standardization. EMC achievement tests can be standardized, but the means for achievement should not be constrained. The material can best be described as an essay on cabling, and the theme is that a cable is just a part of a complete circuit, the interconnect circuit. Cable EMC performance is thus determined largely by circuit design; it is unrealistic to expect cabling techniques to compensate for improper impedance, symmetry or waveform in the circuit.
Standard

Control Plan/Technical Construction File

1998-09-01
HISTORICAL
ARP935A
This document contains a "sample" Control Plan with explanations as to the intended content of various sections. It also can serve as a sample technical construction file as specified by the European EMC Directive.
Standard

ELECTROMAGNETIC INTERFERENCE MEASUREMENT ANTENNAS; STANDARD CALIBRATION METHOD

1997-01-01
HISTORICAL
ARP958C
This SAE Aerospace Recommended Practice (ARP) outlines a standard method for the checkout and calibration of electromagnetic interference measurement antennas. Its primary application is for use when measuring a source 1 m from the antenna in a shield room versus a source at a greater distance (far field). This is the typical distance used in performing military EMC testing. Thus, this is a method of calibration. Shield room characteristics are not considered. It does not address an unknown distributed source. Yet it is close to reality since it is based on another antenna that represents a distributed source. This document presents a technique to determine antenna factors for antennas used primarily in performing measurements in accordance with 2.1 and 2.2. The purpose of Revision B is to include the calibration of other antennas, such as small loop antennas that are also specified for use in these same references.
Standard

ELECTROMAGNETIC INTERFERENCE MEASUREMENT ANTENNAS; STANDARD CALIBRATION METHOD

1996-03-01
HISTORICAL
ARP958B
This SAE Aerospace Recommended Practice (ARP) outlines a standard method for the checkout and calibration of electromagnetic interference measurement antennas. Its primary application is for use when measuring a source 1 m from the antenna in a shield room versus a source at a greater distance (far field). This is the typical distance used in performing military EMC testing. Thus, this is a method of calibration. Shield room characteristics are not considered. It does not address an unknown distributed source. Yet it is close to reality since it is based on another antenna that represents a distributed source. This document presents a technique to determine antenna factors for antennas used primarily in performing measurements in accordance with 2.1 and 2.2. The purpose of Revision B is to include the calibration of other antennas, such as small loop antennas that are also specified for use in these same references.
X