Refine Your Search

Topic

Search Results

Standard

Filters, Conventional, Electromagnetic Interference Reduction General Specification For

2023-09-18
CURRENT
ARP1172A
This specification covers the general requirements for conventional AC and/or DC current carrying filter networks for the reduction of electromagnetic interference. A conventional filter is defined herein as a component containing definitive, lumped, R-L-C components and not employing distributed parameters as a required characteristic.
Standard

Guide to Civil Aircraft Electromagnetic Compatibility (EMC)

2023-06-14
WIP
ARP60493A
This revision will include: - Clarification on instrumented radio ground test methods (non-tunable receivers, HF comm, calculation of decision thresholds, margin, receiver RBW, coax loss, etc.) - Guidance for testing TCAS/XPDR in flight (to avoid interference with local traffic when ground testing) - Other feedback from users of the document
Standard

Electromagnetic Compatibility on Gas Turbine Engines for Aircraft Propulsion

2023-02-20
CURRENT
AIR1423A
The purpose of this AIR is to acquaint the aerospace industry with problems in attaining electromagnetic compatibility on gas turbine engines, particularly as used in aircraft. It is also the purpose of this AIR to present guidelines for the application of EMC controls to the engine, to its components which of necessity must operate in very hostile environments and to its interface with the aircraft.
Standard

Methods of Achieving Electromagnetic Compatibility of Gas Turbine Engine Accessories, for Self-Propelled Vehicles

2023-02-20
CURRENT
AIR1425B
This SAE Aerospace Information Report (AIR) is a description of methods to be employed to achieve Electromagnetic Compatibility (EMC) of gas turbine engine accessories. Its primary objectives are to aid those system designers of gas turbine assemblies who are employing commercial accessories, which are not always EMC employing readily available test instrumentation. Electromagnetic Compatibility (EMC) as defined for this AIR is the ability of all engine accessories to perform within their specified capabilities when subjected to an electromagnetic environment generated by adjacent engine accessories.
Standard

Aerospace Systems Electrical Bonding and Grounding for Electromagnetic Compatibility and Safety

2023-02-10
WIP
ARP1870B
This document establishes the minimum requirements for the electrical bonding and grounding of electric, avionic, armament, communication, and electronic equipment installations for aeronautical and aerospace applications. The bonding and grounding requirements specified herein are to ensure that an adequate low resistance return path for electric, avionic, armament, communication and electronic equipment is achieved which can withstand operating conditions and corrosion. This is essential for the reduction of coupling of electromagnetic fields into or out of the equipment as well as for providing electrical stability to control the currents and/or voltages caused by static charges and discharges and for suppressing the hazardous effects thereof.
Standard

Equivalence of Equipment Environmental Qualification Standards for Civil and Military Aircraft Equipment

2021-06-22
CURRENT
AIR6811
This document provides guidance for applying aircraft equipment electromagnetic, electrical, and mechanical qualification standards (i.e., DO-160, MIL-STD-461, MIL-STD-704, and MIL-STD-810) to civil aircraft certification intended for military use and for military aircraft equipment installed on civil aircraft. The guidance identifies where the equipment environmental qualification standards meet the intent of both the civil or military aircraft certification requirements. Conversely, the guidance will identify where the equipment environmental qualification standards have differences that do not meet the intent of the civil or military aircraft certification requirements and when these differences matter based on equipment criticality, installation location, and/or other variables.
Standard

Guide to Certification of Aircraft in a High-Intensity Radiated Field (HIRF) Environment

2020-01-28
WIP
ARP5583B
This guide provides detailed information, guidance, and methods related to the Federal Aviation Administration Advisory Circular (AC)/Joint Airworthiness Authorities Advisory Material Joint (AMJ) 20-XXX, "Certification of Aircraft Electrical/Electronic Systems for Operation in the High Intensity Radiated Fields (HIRF) Environment" (draft). The AC/AMJ provides acceptable means, but not the only means, of compliance with Parts 23, 25, 27, and 29 of the Federal Aviation Regulations (FAR)/Joint Aviation Regulations (JAR) to prevent hazards to aircraft electrical and electronic systems due to HIRF produced by external transmitters. This guide is neither mandatory nor regulatory in nature and does not constitute a regulation or legal interpretation of the regulation. The information in this guide represents a collection of best engineering practices that have been used to certify aircraft HIRF protection.
Standard

Capacitor, 10 Microfarad for EMI Measurements

2013-03-25
CURRENT
ARP936B
This Aerospace Recommended Practice (ARP) describes the requirements of a special purpose 10 μF feed through capacitor to be used in series with the power line to an electrical or electronic device during EMI tests.
Standard

Control Plan/Technical Construction File

2013-03-25
CURRENT
ARP935B
This document contains a "sample" Control Plan with explanations as to the intended content of various sections. It also can serve as a sample technical construction file as specified by the European EMC Directive.
Standard

Coaxial Test Procedure to Measure the RF Shielding Characteristics of EMI Gasket Materials

2012-06-14
HISTORICAL
ARP1705B
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI gasket materials and EMI gaskets against various joint surfaces. The procedure is also used to test the reliability of the gasketed joint combinations after being subjected to hostile environments.
Standard

Cabling Guidelines for Electromagnetic Compatibility

2009-11-22
CURRENT
AIR1394A
These cable practice recommendations tend toward design guidance rather than standardization. EMC achievement tests can be standardized, but the means for achievement should not be constrained. The material can best be described as an essay on cabling, and the theme is that a cable is just a part of a complete circuit, the interconnect circuit. Cable EMC performance is thus determined largely by circuit design; it is unrealistic to expect cabling techniques to compensate for improper impedance, symmetry or waveform in the circuit.
Standard

Coaxial Test Procedure to Measure the RF Shielding Characteristics of EMI Gasket Materials

2006-04-20
HISTORICAL
ARP1705A
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI gasket materials and EMI gaskets against various joint surfaces. The procedure is also used to test the reliability of the gasketed joint combinations after being subjected to hostile environments.
X