Refine Your Search

Topic

Search Results

Standard

Alternative (Ecological) Method for Measuring Electronic Product Immunity to External Electromagnetic Fields

2023-03-20
CURRENT
ARP5889A
This method is used to define the immunity of electric and electronic apparatus and equipment (products) to radiated electromagnetic (EM) energy. This method is based on injecting the calibrated radio frequency currents (voltages) into external conductors and/or internal circuits of the product under test, measuring the strength of the EM field generated by this product and evaluating its immunity to the external EM field on the basis of the data obtained. The method can be utilized only when it is physically possible to connect the injector to the conductors and/or circuits mentioned before.
Standard

Coaxial Test Procedure to Measure the RF Shielding Characteristics of EMI Gasket Materials

2022-06-24
CURRENT
ARP1705C
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI gasket materials and EMI gaskets against various joint surfaces. The procedure is also used to test the reliability of the gasketed joint combinations after being subjected to hostile environments.
Standard

In-House Verification of EMI Test Equipment

2022-06-24
CURRENT
AIR6236A
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: Current probe Line Impedance Stabilization Network (LISN) Directional coupler Attenuator Cable loss Low noise preamplifier Rod antenna base Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
Standard

Stripline Test Method to Characterize the Shielding Effectiveness of Conductive EMI Gaskets up to 40 GHz

2022-01-21
CURRENT
ARP6248
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI conductive gasket materials and EMI conductive gaskets. Depending on the materials used for the construction of the measuring setup, the EMI conductive gaskets can be characterized against various joint surfaces. This standard will directly provide shielding effectiveness values up to 40 GHz, and will also be applicable for small samples of conductive EMI gaskets.
Standard

Electromagnetic Interference Measurement Antennas; Calibration Method

2021-09-01
CURRENT
ARP958E
This SAE Aerospace Recommended Practice outlines a standardized and economical method for the checkout and calibration of electromagnetic interference measurement antennas. Its application is for use when measuring a source 1 m from the antenna in a shield room. This is the typical distance used in performing military EMC testing. The influence of the shield room on the measured field strength is not considered. This standard does not address the measurement of emissions from an unknown distributed source, yet it attempts to resemble reality by using another antenna, in the calibration method, that represents a distributed source. This document presents a technique to determine antenna factors for antennas used primarily in performing measurements in accordance with References 2.1 and 2.2. The purpose of Revision B was to include the calibration of other antennas, such as biconical, horn, monopole and small loop antennas that are also specified for use in these same references.
Standard

In-House Verification of EMI Test Equipment

2015-12-13
HISTORICAL
AIR6236
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: Current probe Line Impedance Stabilization Network (LISN) Directional coupler Attenuator Cable loss Low noise preamplifier Rod antenna base Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
Standard

Control Plan/Technical Construction File

2013-03-25
CURRENT
ARP935B
This document contains a "sample" Control Plan with explanations as to the intended content of various sections. It also can serve as a sample technical construction file as specified by the European EMC Directive.
Standard

Recommended Insertion Loss Test Methods for EMI Power Line Filters

2012-08-10
CURRENT
ARP4244A
This document presents standard methods to evaluate the common mode and differential mode insertion loss of passive electromagnetic interference power line filters from 10 kHz through 10 GHz. Insertion loss test methods for both quality assurance and performance prediction purposes are described. The performance prediction tests are selected to more closely approximate operating impedances. They are not intended to be inclusive or to represent worst case conditions. However, the methodology of this document can be used to determine the performance in an arbitrary impedance circuit.
Standard

Aerospace Systems Electrical Bonding and Grounding for Electromagnetic Compatibility and Safety

2012-08-10
CURRENT
ARP1870A
This document establishes the minimum requirements for the electrical bonding and grounding of electric, avionic, armament, communication, and electronic equipment installations for aeronautical and aerospace applications. The bonding and grounding requirements specified herein are to ensure that an adequate low resistance return path for electric, avionic, armament, communication and electronic equipment is achieved which can withstand operating conditions and corrosion. This is essential for the reduction of coupling of electromagnetic fields into or out of the equipment as well as for providing electrical stability to control the currents and/or voltages caused by static charges and discharges and for suppressing the hazardous effects thereof.
Standard

Coaxial Test Procedure to Measure the RF Shielding Characteristics of EMI Gasket Materials

2012-06-14
HISTORICAL
ARP1705B
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI gasket materials and EMI gaskets against various joint surfaces. The procedure is also used to test the reliability of the gasketed joint combinations after being subjected to hostile environments.
Standard

Cabling Guidelines for Electromagnetic Compatibility

2009-11-22
CURRENT
AIR1394A
These cable practice recommendations tend toward design guidance rather than standardization. EMC achievement tests can be standardized, but the means for achievement should not be constrained. The material can best be described as an essay on cabling, and the theme is that a cable is just a part of a complete circuit, the interconnect circuit. Cable EMC performance is thus determined largely by circuit design; it is unrealistic to expect cabling techniques to compensate for improper impedance, symmetry or waveform in the circuit.
Standard

Coaxial Test Procedure to Measure the RF Shielding Characteristics of EMI Gasket Materials

2006-04-20
HISTORICAL
ARP1705A
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI gasket materials and EMI gaskets against various joint surfaces. The procedure is also used to test the reliability of the gasketed joint combinations after being subjected to hostile environments.
Standard

Recommended Insertion Loss Test Methods for EMI Power Line Filters

2004-08-18
HISTORICAL
ARP4244
This document presents standard methods to evaluate the common mode and differential mode insertion loss of passive electromagnetic interference power line filters from 10 kHz through 10 GHz. Insertion loss test methods for both quality assurance and performance prediction purposes are described. The performance prediction tests are selected to more closely approximate operating impedances. They are not intended to be inclusive or to represent worst case conditions. However, the methodology of this document can be used to determine the performance in an arbitrary impedance circuit.
X