Refine Your Search


Search Results


Wire, Electrical, Crosslinked Polyalkene, Crosslinked Alkane-Imide Polymer, or Polyarlyene Insulated, Copper or Copper Alloy

AS81044 covers single conductor electric wires made as specified in the applicable detail specification with tin-coated, silver-coated, or nickel-coated copper or copper alloy conductors insulated with crosslinked polyalkene, crosslinked alkane-imide polymer, or polyarylene. The crosslinked polyalkene, crosslinked alkane-imide polymer, or polyarylene may be used alone or in combination with other insulation materials as specified in the detail specification.

Cable, Power, Electrical, Portable General Specification For

This specification covers 600 V heavy duty, portable, power, single and multiconductor, electrical cable for severe flexing service (see detail specifications for voltage limitations). The AS5756 insulation system has been used in aerospace ground power applications using 115/200 V (phase to neutral) at 400 Hz AC. Verification of the suitability of this product for use in other electrical system configurations (600 V, etc.) is the responsibility of the user.

Insulation Sleeving, Electrical, Heat Shrinkable, General Specification for

This specification establishes the requirements for various types and colors of electrical insulating sleeving that will shrink to a predetermined size upon the application of heat. This specification includes provisions for demonstrating compliance with qualification requirements (see Section 4 and 7.3), in process inspection, and statistical process control inspections (see 4.4). The continuous operating temperature ranges for the sleeving classes covered by this specification are from -112 to +482 °F (-80 to +250 °C). The continuous operating temperature range for each sleeving class is given in the applicable detail specification.

Metal Clad Fibers for Electrical Shielding and Harness Overbraid

Over the past two and one-half decades several metal clad fibers and fabrics have been developed to provide aerospace vehicle designers with a conductive, lighter weight alternative to coated copper, coated stainless steel and steel wire used for cable and wire shielding and harness overbraids on electrical cables. Several of these candidates have been unable to provide the strength or thermal stability necessary for the aerospace environment. However, several polymer-based products have shown remarkable resistance to the rigorous environment of aerospace vehicles. Concurrent with these fiber developments, there have been changes in the structures of aerospace vehicles involving greater use of nonmetallic outer surfaces. This has resulted in a need for increased shielding of electrical cables which adds substantial weight to the vehicle. Thus, a lighter weight shielding material has become more critical to meet the performance requirements of the vehicle.