Refine Your Search

Search Results

Viewing 1 to 20 of 20
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2019-03-12
WIP
AMS3961/1A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2019-03-12
WIP
AMS3961/3A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2019-03-12
WIP
AMS3961/2A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

Surface Preparation and Priming of Aluminum Alloy Parts for High Durability Structural Adhesive Bonding

2018-11-15
WIP
ARP1524B
This Aerospace Recommended Practice (ARP) describes the processing system and techniques for the surface preparation and priming of aluminum alloy parts for structural adhesive bonding to achieve optimum bondline durability, corrosion resistance, and manufacturing producibility. While this surface preparation has been developed and validated for two high strength aluminum alloys, 2024 and 7075, in the hardened condition it is expected to be applicable to other alloys and tempers. This surface preparation system has been validated for use with 180 degrees F (82 degrees C) and with 250 degrees F (121 degrees C) curing elastomer-modified epoxy adhesive and corrosion-inhibiting primer. The processes described herein are the result of laboratory evaluation of structural and durability performance.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2015-12-02
CURRENT
AMS3961/1
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2015-12-02
CURRENT
AMS3961/3
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2015-12-02
CURRENT
AMS3961/2
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

Cure Monitor, Electrical Methods

1994-10-01
CURRENT
ARP1926
This document describes a standard method to collect and report dielectric data for the purpose of monitoring or studying the cure of composites.
Standard

Structural Weldbonding of Aluminum Structures

1990-10-01
CURRENT
ARP1675
This SAE Aerospace Recommended Practice describes the aluminum weldbonding process for fabrication of secondary aircraft structural assemblies possessing excellent strength, fatigue life, and environmental durability.
Standard

Application of Direct Pressure to Resin in Curing of Epoxy and Addition Type Polyimides

1989-01-01
CURRENT
ARP1927
This recommended practice describes the materials, related equipment, and particular processing techniques utilized in process science curing of composite hardware where pressure is imparted specifically to the resin of curing composites. Included as Appendix "A" to this ARP is a discussion of the particular techniques developed for a processing science philosophy which has consistently produced void and porosity-free, large area, thick composite structures.
Standard

Physical-Chemical Characterization Techniques, Epoxy Adhesive and Prepreg Resin Systems

1985-04-01
CURRENT
ARP1610A
This recommended practice describes the physical and chemical characterization techniques for identification of epoxy adhesive and prepreg resin systems in order to verify the chemical formulation, resin B-staging (See 8.1), cure reaction rates, adhesive moisture content, and resin component mix ratios, as necessary to achieve manufacturing and quality producibility and engineering performance.
X