Refine Your Search

Topic

Search Results

Standard

A Guideline for Aerospace Platform Fiber Optic Training and Awareness Education

2022-10-12
WIP
ARP5602A
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
Standard

Aerospace Cable, Fiber Optic

2021-09-21
CURRENT
AS5382B
This standard covers jacketed single-fiber multimode and single-mode fiber optic cables for aerospace usage.
Standard

Inline Optical Power Monitoring, Network End-to-End Data Link Evaluation System

2019-10-02
CURRENT
AIR6552/1
This document establishes methods to obtain, store, and access data about the health of a fiber optic network using commercially available inline optical power monitoring sensors. This document is intended for: Managers Engineers Technicians Contracting officers Third party maintenance agencies Quality assurance
Standard

Characterization and Requirements for New Aerospace Fiber Optic Cable Assemblies - Jumpers, End Face Geometry, Link Loss Measurement, and Inspection

2019-03-28
WIP
AS5675A
To create a standard that instructs both supplier and user in the testing and characterization of initial build fiber optic cable assemblies for avionics/aerospace applications. This can be in the plant or in the avionics “box.” It includes specification of jumpers (aerospace measurement quality jumpers), end faces, link loss requirements and inspection.
Standard

In-Service Fiber Optic Inspection, Evaluation and Cleaning, Best Practices, Physical Contact Termini

2018-01-04
CURRENT
ARP6283
This document provides recommended best practice methods and processes for the in-service inspection, evaluation and cleaning of all physical contact (PC) fiber optic interconnect components (termini, alignment sleeves and connectors), test equipment and test leads for maintainers qualified to the approved aerospace fiber optic training courses developed in accordance with ARP5602 or ARINC807. This document also provides a decision-making disposition flowchart to determine whether the fiber optic components are acceptable for operation. For definitions of individual component parts refer to ARP5061.
Standard

Characterization and Requirements for New Aerospace Fiber Optic Cable Assemblies - Jumpers, End Face Geometry, Link Loss Measurement, and Inspection

2012-05-03
CURRENT
AS5675
To create a standard that instructs both supplier and user in the testing and characterization of initial build fiber optic cable assemblies for avionics/aerospace applications. This can be in the plant or in the avionics “box.” It includes specification of jumpers (aerospace measurement quality jumpers), end faces, link loss requirements and inspection.
Standard

Aerospace Cable, Fiber Optic

2011-10-11
HISTORICAL
AS5382A
This standard covers jacketed single-fiber multimode and single-mode fiber optic cables for aerospace usage.
Standard

Multi-Transmitter Bidirectional Fiber-Optic Data Bus for Distributed Aircraft Control Systems

2011-03-22
CURRENT
AS5370A
This specification applies to a communication protocol for networked control systems. The protocol provides peer-to-peer communication for networked control and is suitable for implementing both peer-to-peer and master-slave control strategies. This specification describes services for all seven protocol layers. In the layer 7 specification, it includes a description of the types of messages used by applications to exchange application and network management data.
Standard

A Guideline for Aerospace Platform Fiber Optic Training and Awareness Education

2010-09-10
CURRENT
ARP5602
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
Standard

A Guideline for Aerospace Platform Fiber Optic Training and Awareness Education Aerospace Fiber Optics Engineer Knowledge Competencies

2008-11-24
CURRENT
ARP5602/10
This document establishes training guidelines applicable to fiber optics engineer technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Trainers/Instructors Third Party Maintenance Agencies Production
Standard

A Guideline for Aerospace Platform Fiber Optic Training and Awareness Education Introduction to Aerospace Fiber Optics Knowledge Competencies

2007-10-19
CURRENT
ARP5602/1
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
Standard

A Guideline for Application of RF Photonics to Aerospace Platforms

2005-06-29
CURRENT
AIR5601
This SAE Aerospace Information Report (AIR) is devoted to the challenges of applying optics to new advanced RF analog systems only; digital data link applications are covered elsewhere in protocol/architecture specific documents like Fibre Channel, ATM, Ethernet, Sonet, etc. This document has four main goals: 1 To completely cover today’s capabilities and limitations of fiber in meeting multiple types of advanced RF system requirements. 2 To discuss near term advancements being developed that will bring us closer to meeting all the capabilities of current copper coax systems. 3 To identify the benefits of fiber optics for RF systems 4 To identify challenges for future development.
X