Refine Your Search

Topic

Search Results

Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2019-08-23
WIP
ARP6316A
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18 and no greater than 30 degrees relative to the aircraft longitudinal axis. Later revisions are intended to provide criteria for other facing directions. Performance criteria for side facing seats installed with the occupant facing direction at 90 degrees relative to the aircraft longitudinal axis are provided in AS8049/1. Seats installed at angles greater than 30 degrees relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness. However, this document does not provide the criteria for oblique facing seats incorporating such rests.
Standard

Performance Standard for Child Restraint Systems in Transport Category Airplanes

2019-08-07
WIP
AS5276/1A
This SAE Aerospace Standard (AS) defines minimum performance standards and related qualification criteria for add-on child restraint systems (CRS) which provide protection for small children in passenger seats of transport category airplanes. The AS is not intended to provide design criteria that could be met only by an aircraft-specific CRS. The goal of this standard is to achieve child-occupant protection by specifying a dynamic test method and evaluation criteria for the performance of CRS under emergency landing conditions.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Option 7b

2019-08-07
CURRENT
AIR6448A
The primary purpose of this document is to provide roles, responsibilities and accountabilities to meet AC 21-49 Section 7.b ‘Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document may be applied to all applicable seat TSOs (C39(), C127()…etc). The approval for the integration of the electronics will fall, in part or in full, under the type design authority of the Seat Installer rather than the Seat Supplier shipping the integrated seat. The defined responsibilities, areas of authority and accountability of each party, as well as necessary communication protocols, must ensure configuration management, design control and quality control. These definitions, controls and protocols are agreed (thru normal commerical agreements and binding contracts) and adhered to by all parties ensuring all parts in the supply chain remain approved (e.g. certified and conformed).
Standard

Aircraft Seat Design Guidance and Clarifications

2019-03-04
WIP
ARP5526F
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification.
Standard

Impact Characteristics of Seat Back Mounted IFE Monitors - Basis for ARP6330

2018-09-13
CURRENT
AIR6908
This document provides background information, rationale, and data (both physical testing and computer simulations) used in defining the component test methods and similarity criteria described in SAE Aerospace Recommended Practice (ARP) 6330. ARP6330 defines multiple test methods uses to assess the effect of seat back mounted IFE monitor changes on blunt trauma to the head and post-impact sharp edge generation. The data generated is based on seat and IFE components installed on type A-T (transport airplane) certified aircraft. While not within the scope of ARP6330, generated test data for the possible future development of surrogate target evaluation methods is also included.
Standard

Methods to Evaluate Impact Characteristics of Seat Back Mounted IFE Monitors

2018-09-13
CURRENT
ARP6330
This SAE Aerospace Recommended Practice (ARP) defines means to assess the effect of changes to seat back mounted IFE monitors on blunt trauma to the head and post-impact sharp edges. The assessment methods described may be used for evaluation of changes to seat back monitor delethalization (blunt trauma and post-test sharp edges) and head injury criterion (HIC) attributes (refer to ARP6448 Appendix A Items 3 and 6, respectively). Application is focused on type A-T (transport airplane) certified seat installations.
Standard

Aircraft Seat Design Guidance and Clarifications

2018-08-23
CURRENT
ARP5526E
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification.
Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2017-06-28
CURRENT
AS6316
This SAE Aerospace Standard (AS) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18° and no greater than 45° relative to the aircraft longitudinal axis. Seats installed at angles greater than 30° relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness and must satisfy the criteria listed in Table 2. Later revisions are intended to provide criteria for other facing directions. Performance criteria for forward and aft facing seats are provided in AS8049 and for side facing seats in AS8049/1.
Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2016-05-13
CURRENT
ARP6316
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18 and no greater than 30 degrees relative to the aircraft longitudinal axis. Later revisions are intended to provide criteria for other facing directions. Performance criteria for side facing seats installed with the occupant facing direction at 90 degrees relative to the aircraft longitudinal axis are provided in AS8049/1. Seats installed at angles greater than 30 degrees relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness. However, this document does not provide the criteria for oblique facing seats incorporating such rests.
Standard

Performance Standards for Side-Facing Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2016-03-05
HISTORICAL
AS8049/1A
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2015-08-14
CURRENT
AS8049C
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29. Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Aircraft Seat Design Guidance and Clarifications

2015-07-17
HISTORICAL
ARP5526D
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Section 7.b

2012-06-11
CURRENT
ARP6448
This document provides an industry-recommended framework for establishing agreements to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, IFE, etc.) meet the seat TSO Minimum Performance Standard. These agreements will allow Seat Suppliers to build and ship completed, integrated and approved seat assemblies under TSOA with electronics included. The document presents the roles, responsibilities and accontibilities of the Electronics Manufacturer, the Seat Supplier, and the Seat Installer/Electronics Activator in the context of AC 21-49 Section 7.b ‘ Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document applies to all FAA seat TSOs (C39(), C127()…etc).
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Option 7b

2011-06-20
HISTORICAL
AIR6448
This document provides an industry recommended framework for establishing a multi-party agreement to support approval of electronic components (e.g., actuation system, reading light, inflatable restraint, IFE, etc.) integrated in aircraft seats and provide a framework that allows seat manufacturers to build and ship completed, integrated, and approved seat assemblies with electronics included. The primary purpose of this document is to provide roles, responsibilities and accountabilities to meet AC 21-49 Section 7.b ‘Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document may be applied to all applicable seat TSOs (C39(), C127()…etc). The approval for the integration of the electronics will fall, in part or in full, under the type design authority of the Seat Installer rather than the Seat Supplier shipping the integrated seat.
Standard

Aircraft Seat Design Guidance and Clarifications

2011-05-24
HISTORICAL
ARP5526C
This Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification.
Standard

Performance Standards for Single-Occupant, Side-Facing Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2010-09-13
HISTORICAL
AS8049/1
This Society of Automotive Engineers (SAE) Aerospace Standard (AS) Annex defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to define test and evaluation criteria to demonstrate occupant protection when a single-occupant side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in the applicable 14, Code of Federal Regulations (CFR) Part 23, 25, 27 or 29. While this Annex addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
Standard

Aircraft Seat Design Guidance and Clarifications

2010-06-02
HISTORICAL
ARP5526B
This Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2005-01-25
HISTORICAL
AS8049B
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29. Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Aircraft Seat Design Guidance and Clarifications

2004-05-21
HISTORICAL
ARP5526A
The goal of this SAE Aerospace Recommended Practice (ARP) is to promote a common understanding of terms, compliance issues and design criteria in order to facilitate certification of seat installations in an aircraft. This ARP does not specify specific designs or design methods for such certification.
Standard

Modification or Replacement of Components on Dynamically Certified Seat Systems

2001-10-01
HISTORICAL
ARP5497
This document outlines the engineering evaluation appropriate for modifying or replacing components of a previously certified seat when the certification process is based on qualification to the requirements of AS8049, which includes dynamic testing. The engineering evaluation presented in this document may be used to determine if a modification (including replacement of a component) is a minor change with respect to meeting the dynamic testing requirements described in AS8049. Whenever a modification is considered, the ability to meet all requirements of the applicable Federal Aviation Regulation (FAR) must be verified. For example, this would include the capability to meet requirements such as flammability and flotation. Analysis and/or test data supporting the ability of the new materials and/or configuration to meet the applicable requirements must be submitted with the change documentation.
X