Refine Your Search

Topic

Search Results

Standard

GUIDANCE FOR USAGE OF DIGITAL CERTIFICATES

2022-07-01
CURRENT
ARINC842-3
The purpose of this document is to provide operational guidance for key life-cycle management, which refers to the phases through which digital certificates and associated cryptographic keys progress, from creation through usage to retirement. Additionally, this document provides implementation guidance for online certificate provisioning of aircraft systems. The scope includes both the onboard part (aircraft system) as well as the ground part (PKI provider and Ground Infrastructure). Consideration of both onboard and ground provides the benefit of security considerations being included in the process flow and chain of custody. Specifically, the management to and from the aircraft is defined within a workflow.
Standard

AVIONICS APPLICATION SOFTWARE STANDARD INTERFACE PART 0 OVERVIEW OF ARINC 653

2021-11-15
CURRENT
ARINC653P0-3
This document provides an overview of the entire set of documents collectively referred to as ARINC 653. As this set of documents evolves, Part 0 has been adjusted to reflect technical changes made in Supplements to Parts 1 through 5 in conjunction with the technical changes made in the evolution of ARINC 653. A summary of the ARINC 653 documents follows: Part 0 – Overview of ARINC 653 Part 1 – Required Services Part 2 – Extended Services Part 3A – Conformity Test Specification for ARINC 653 Required Services Part 3B – Conformity Test Specification for ARINC 653 Extended Services Part 4 – Subset Services Part 5 – Core Software Recommended Capabilities The term “this document” refers to Part 0 only, while the term “ARINC 653” or “the Specification” refers to the whole set of ARINC 653 documents, currently Parts 0 to 5.
Standard

AIRCRAFT SERVER, COMMUNICATIONS, AND INTERFACE STANDARD

2021-11-10
CURRENT
ARINC679
ARINC Report 679 defines the functional characteristics of an airborne server that will support Electronic Flight Bags (EFBs) and similar peripherals used in the flight deck, cabin, and maintenance applications. The document defines how EFBs will efficiently, effectively, safely, and securely connect to the airborne server in a way that offer expanded capabilities to aircraft operators. The airborne server has two main functions, first to provide specific services to connected systems, and second to provide centralized security for the EFB and its data. This document is a functional airborne server definition. It does not define the physical characteristics of the server.
Standard

STANDARD DATA INTERFACE FOR GALLEY INSERT (GAIN) EQUIPMENT PART 1 CAN COMMUNICATIONS

2021-09-10
CURRENT
ARINC812AP1-2
The purpose of this specification is to define the general Galley Insert (GAIN)standardization philosophy, provide comprehensive equipment interfaces, and disseminate the most current industry guidance. Part 1 covers the Controller Area Network (CAN) data interface attachments, envelopes, and data content to be considered between all galley equipment using a Galley Data Bus as described within this specification. This document is intended as the successor and replacement for ARINC Specification 812. This document contains significant improvements to CAN data interfaces.
Standard

COMMON TERMINOLOGY AND FUNCTIONS FOR SOFTWARE DISTRIBUTION AND LOADING

2021-08-11
CURRENT
ARINC645-1
This document provides airlines, airframe manufacturers, aircraft equipment suppliers, and others with information that is specific to data, software, and ground tools used in aviation configuration and data management. As a starting point, this document provides guidance on: Which standard to use in specific situations The use of and how integrity checks should be applied Common terminology in airborne software management Since airplanes started using software controlled hardware, there has been a need to standardize processes and terminology. This document is the centroid to which other software standards are related.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Standard

INTERSYSTEM NETWORK INTEGRATION

2021-06-24
CURRENT
ARINC688
The purpose of this document is to provide guidelines for integrating previously standalone cabin systems such as cabin management systems, In-Flight Entertainment (IFE) systems, In-Flight Connectivity (IFC) systems, galley systems, surveillance systems, etc. Resource sharing between systems can reduce airline costs and/or increase functionality. But, as systems expose their internal resources to external systems, the risk of an intrusion that could degrade function and/or negatively expose the supplier’s or airline’s brand increases. This document provides a recommended IP networking design framework between aircraft systems to reduce the operational security threats while still supporting the necessary intersystem routing.
Standard

LOGICAL SOFTWARE PART PACKAGING FOR TRANSPORT

2020-11-16
CURRENT
ARINC641-1
The purpose of this standard is to provide a method for packaging aircraft software parts for distribution using contemporary media or by electronic distribution. This project intends to standardize and provide guidance for the storage of floppy based software, currently packaged in media set parts. This standard format can be then stored or distributed on a single physical media member (CD-ROM), or by electronic crate. The obsolescence of floppy disks drive an urgent need for this guidance.
Standard

COCKPIT DISPLAY SYSTEM INTERFACES TO USER SYSTEMS PART 2 USER INTERFACE MARKUP LANGUAGE (UIML)

2020-08-07
CURRENT
ARINC661P2
This document defines the User Interface Markup Language (UIML) which allows developers to specify the interface, look, and behavior of any Graphical User Interface (GUI). The GUI consists of several components, from the simplest, called primitive components (such as rectangle, text, image, group), to more complex components built by the aggregation of several primitive components and by providing relational specific logic. Also defined is the execution model, which provides the rules to interpret the language so that the graphical user interface has a standardized and consistent behavior defined for any platform.
Standard

AIRCRAFT DATA INTERFACE FUNCTION (ADIF)

2020-07-21
CURRENT
ARINC834-8
This document defines an Aircraft Data Interface Function (ADIF) developed for aircraft installations that incorporate network components based on commercially available technologies. This document defines a set of protocols and services for the exchange of aircraft avionics data across aircraft networks. A common set of services that may be used to access specific avionics parameters are described. The ADIF may be implemented as a generic network service, or it may be implemented as a dedicated service within an ARINC 759 Aircraft Interface Devices (AID) such as those used with an Electronic Flight Bag (EFB). Supplement 8 includes improvements in the Aviation Data Broadcast Protocol (ADBP), adds support for the Media Independent Aircraft Messaging (MIAM) protocol, and contains data security enhancements. It also includes notification and deprecation of the Generic Aircraft Parameter Service (GAPS) protocol that will be deleted in a future supplement.
Standard

VHF DIGITAL LINK (VDL) MODE 2 IMPLEMENTATION PROVISIONS

2020-07-15
CURRENT
ARINC631-8
This document describes the functions to be performed by airborne and ground components of the VDLM2 to successfully transfer messages from VHF ground networks to avionics systems on aircraft and vice versa where the data are encoded in a code and byte independent format. The compatibility of VDLM2 with OSI is established by defining a set of services and protocols that are in accordance with the OSI basic reference model. The compatibility with the ATN protocols is achieved by defining a set of interfaces between the VDLM2 subnetwork protocol specification and the Mobile Subnetwork Dependent Convergence Function (MSNDCF). The SNDCF is defined in the ICAO ATN SARPs.
Standard

CABIN EQUIPMENT INTERFACES PART 2 PHYSICAL LAYER - IN-SEAT PROTOCOL

2020-06-30
CURRENT
ARINC485P2-5
ARINC Specification 485, Part 2 specifies the ARINC 485-control protocol used by the LRUs described in ARINC Specification 628 Part 2. This document defines a multi-drop bus. The point-to-point configuration is also supported. The point-to-point bus is treated simply as a multi-drop bus with only one drop. There is one master LRU and one or more slave LRUs present on the bus. However; multiple buses may be connected in parallel, where each parallel bus operates independently from each other.
Standard

MEDIA INDEPENDENT SECURE OFFBOARD NETWORK

2020-06-19
CURRENT
ARINC848
ARINC Specification 848 is a functional standard based on a protocol specification profile for a secured network interface. The purpose is to define a common method of initiating a mutually authenticated tunnel between an aircraft service and its Enterprise service. ARINC Specification 848 defines a standard implementation for securing the communications between an onboard Local Area Network (LAN) and an Enterprise LAN on the ground. Various aircraft network architectures and various air to ground communication channels (aka media) are accommodated in this document. For example, L-band Satellite Communication (Satcom), Ku/Ka-band Satcom, Gatelink Cellular, and Gatelink are considered.
Standard

CABIN EQUIPMENT NETWORK BUS

2020-06-19
CURRENT
ARINC854
This standard defines a new cabin network bus. While ARINC Specification 485: Cabin Equipment Interfaces, Part 2, Physical Layer – In-seat Protocol defined a low-speed serial communications interface between electronic equipment in the passenger seat, it is design-focused on obtaining status from in-seat electronic equipment. ARINC Specification 854 is a messaging protocol but does not preclude using the bus for video streaming or multicast. Cabin Equipment has evolved from the very simple to quite sophisticated systems. The resulting communications needs have surpassed the ability of ARINC 485 to provide the necessary data capacity and response times. The basic requirements for low latency, full duplex, elimination of ARINC 485 Master/Slave polling and lower weight drives the selection of 100BASE-T1 (per IEEE 802.3) as the preferred bus format.
Standard

AVIATION SATELLITE COMMUNICATION SYSTEMS PART 1 AIRCRAFT INSTALLATION PROVISIONS

2019-12-23
CURRENT
ARINC741P1-15
This ARINC Standard defines the installation characteristics of first generation L-band satellite communication systems. It provides the traditional form, fit, function, and interfaces for the installation of satcom equipment for use in all types of aircraft. Description of avionics equipment (e.g., Satellite Data Unit (SDU), Antennas, etc.) are included. Supplement 15 adds references to new Diplexer/Low Noise Amplifiers (DLNAs) defined in Supplement 8 to ARINC Characteristic 781: Mark 3 Aviation Satellite Communication Systems. The five new DLNAs are intended to protect Inmarsat Classic Aero and SwiftBroadband (SBB) satcom equipment from ground-based cellular sources, such as cellular Long Term Evolution (LTE) and Ancillary Terrestrial Component (ATCt). The DLNAs are categorized by desired features and service (e.g., new DLNA versus drop-in replacement, LTE and/or ATCt protection, Classic Aero and/or SBB service).
Standard

SECOND GENERATION AVIATION SATELLITE COMMUNICATION SYSTEMS, AIRCRAFT INSTALLATION PROVISIONS

2019-12-23
CURRENT
ARINC761-6
This ARINC Standard defines the installation characteristics of second generation L-band satellite communication systems. It provides the traditional form, fit, function, and interfaces for the installation of satcom equipment for use in all types of aircraft. Description of avionics equipment (e.g., Satellite Data Unit (SDU), Antennas, etc.) are included. Supplement 6 adds references to new Diplexer/Low Noise Amplifiers (DLNAs) defined in Supplement 8 to ARINC Characteristic 781: Mark 3 Aviation Satellite Communication Systems. The five new DLNAs are intended to protect Inmarsat Classic Aero and SwiftBroadband (SBB) satcom equipment from ground-based cellular sources, such as cellular Long Term Evolution (LTE) and Ancillary Terrestrial Component (ATCt). The DLNAs are categorized by desired features and service (e.g., new DLNA versus drop-in replacement, LTE and/or ATCt protection, Classic Aero and/or SBB service).
Standard

MARK I AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2019-09-19
CURRENT
ARINC791P1-3
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
CURRENT
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

AIRCRAFT SOFTWARE COMMON CONFIGURATION REPORTING

2019-08-13
CURRENT
ARINC843-1
This standard defines a common configuration report format that can be retrieved from an aircraft for use by ground tools and maintenance personnel. Reports will be generated in Extensible Markup Language (XML) format and structured as defined by this document. Several optional elements and attributes are defined to allow flexibility for a given report. This standard provides aircraft manufacturers, regulatory agencies, and airlines a format standard for aircraft configuration reporting, and facilitates automated comparison of configuration data reports (e.g., authorized versus as flying, etc.).
X