Refine Your Search

Author

Search Results

Technical Paper

Effects of Hydrocarbon with Different Ignition Properties and Hydrogen Blended Fuels on Autoignition and Combustion in an IC Engine

2023-10-24
2023-01-1802
Hydrogen has attracted attention as one of the key fuels for making internal combustion engines carbon neutral. However, the combustion characteristics of hydrogen differ greatly from those of conventionally used hydrocarbons. Therefore, in order to develop next-generation internal combustion engines that operate on hydrogen, it is first necessary to have a thorough understanding of the combustion characteristics of hydrogen. Engines that can take maximum advantage of those characteristics should be developed on the basis of that knowledge. Toward that end, the purpose of this study was to investigate the fundamental combustion characteristics of hydrogen in a test engine. This paper presents the results of an investigation of the effects on low-temperature oxidation reactions and autoignition when hydrogen was blended into dimethyl ether (DME) [1, 2], a gaseous hydrocarbon fuel.
Technical Paper

A Study of Autoignition and Combustion Characteristics in an HCCI Engine using a Blended Fuel of DME and City Gas

2023-09-29
2023-32-0017
In recent years, there has been a need to reduce CO2 emissions from internal combustion engines in order to achieve an energy-saving and low-carbon society. Against this backdrop, the authors have focused attention on Homogeneous Charge Compression Ignition (HCCI) combustion that achieves both high efficiency and clean emissions. With HCCI combustion, a premixed mixture of fuel and air is supplied to the cylinder and autoignited by piston compression to drive the engine. Autoignition makes it possible to operate the engine at a high compression ratio, enabling the HCCI combustion system to attain high efficiency. However, HCCI combustion also has some major unresolved issues. Two principal issues that can be cited are ignition timing control for igniting the mixture at the proper time and assurance of suitable combustion conditions following ignition to prevent incomplete combustion and knocking.
Journal Article

Effects of Ignition Timing and Fuel Chemical Composition on Autoignition Behavior and Knocking Characteristics under Lean Conditions

2022-01-09
2022-32-0070
This study focused on autoignition behavior and knocking characteristics. Using an optically accessible engine, autoignition behavior was observed over the entire bore area, and the relationship between autoignition behavior and knocking characteristics was clarified on the basis of visualized combustion images and frequency analysis of the in-cylinder pressure waveform. In addition, chemical kinetic simulations were used to investigate the effects of different fuel chemical compositions on combustion and autoignition characteristics under equivalent octane ratings. The results showed that the rate of autoignition development has a significant effect on knocking intensity. In addition, the ρ1,0 mode is the dominant vibration mode caused by knocking, regardless of the location of autoignition. It can be inferred that strong knocking is caused by multiple vibration modes.
Technical Paper

Influence of Zn, Mo, P, S-contained Engine Oil Additives on Abnormal Combustion in a Spark Ignition Engine

2020-01-24
2019-32-0586
A Spark Ignition Engine has some kinds of problem to be solved over many years, one of them is abnormal combustion; Low-speed pre-ignition (LSPI) under low-speed, high-load driving conditions for vehicle, and pre-ignition under longterm operation without cleaning a combustion chamber for gas cogeneration. As a cause for abnormal combustion, engine oil droplets diluted by liquid fuel and peeled combustion deposits delivered from engine oil are proposed. In this study, experiments were conducted focusing on engine oil additives having different chemical structure and abnormal combustion behavior. A four-stroke side-valve single cylinder engine that allowed in-cylinder visualization of the combustion flame was used in the experiments. The experimental results showed that the influence of DTC additive on abnormal combustion is small and the zinc component contained in the DTP additives had the effect of advancing the autoignition timing.
Technical Paper

Influence of Autoignition and Pressure Wave Behavior on Knock Intensity Based on Multipoint Pressure Measurement and In-Cylinder Visualization of the End Gas

2018-10-30
2018-32-0001
In this study, the effect of autoignition behavior in the unburned end-gas region on pressure wave formation and knock intensity was investigated. A single-cylinder gasoline engine capable of high-speed observation of the end gas was used in the experiments. Visualization in the combustion chamber and spectroscopic measurement of light absorption by the end gas were carried out to analyze autoignition behavior in the unburned end-gas portion and the reaction history before autoignition. The process of autoignition and pressure wave growth was investigated by analyzing multipoint pressure histories. As a result, it was found that knocking intensity increases through interaction between autoignition and pressure waves.
Technical Paper

Study on Knocking Characteristics for High-Efficiency Operation of a Super-Lean Spark Ignition Engine

2018-10-30
2018-32-0002
This study investigated the influence of EGR and spark advance on knocking under high compression ratio, ultra-lean mixture and supercharged condition using premium gasoline as a test fuel. A high-compression ratio, supercharged single cylinder engine was used in this experiment. As a result, the period from ignition to autoignition was prolonged. In addition, knock intensity was drastically reduced. In other words, it is inferred that by combining an appropriate amount of EGR and spark advance, high efficiency operation avoiding knocking can be realized.
Technical Paper

A Study of the Factors Determining Knocking Intensity Based on High-Speed Observation of End-Gas Autoignition Using an Optically Accessible Engine

2018-10-30
2018-32-0003
The purpose of this study was to investigate how autoignition leads to the occurrence of pressure oscillations. That was done on the basis of in-cylinder visualization and analysis of flame images captured with a high-speed camera using an optically accessible engine, in-cylinder pressure measurement and measurement of light emission from formaldehyde (HCHO). The results revealed that knocking intensity tended to be stronger with a faster localized growth speed of autoignition. An investigation was also made of the effect of exhaust gas recirculation (EGR) as a means of reducing knocking intensity. The results showed that the application of EGR advanced the ignition timing, thereby reducing knocking intensity under the conditions where knocking occurred.
Journal Article

Analysis of Interaction between Autoignition and Strong Pressure Wave Formation during Knock in a Supercharged SI Engine Based on High Speed Photography of the End Gas

2017-11-15
2017-32-0119
Engine knock is the one of the main issues to be addressed in developing high-efficiency spark-ignition (SI) engines. In order to improve the thermal efficiency of SI engines, it is necessary to develop effective means of suppressing knock. For that purpose, it is necessary to clarify the mechanism generating pressure waves in the end-gas region. This study examined the mechanism producing pressure waves in the end-gas autoignition process during SI engine knock by using an optically accessible engine. Occurrence of local autoignition and its development process to the generation of pressures waves were analyzed under several levels of knock intensity. The results made the following points clear. It was observed that end-gas autoignition seemingly progressed in a manner resembling propagation due to the temperature distribution that naturally formed in the combustion chamber. Stronger knock tended to occur as the apparent propagation speed of autoignition increased.
Technical Paper

A Study of Autoignition Behavior and Knock Intensity in a SI Engine under Different Engine Speed by Using In-Cylinder Visualization

2017-11-05
2017-32-0050
Internal combustion engines have been required to achieve even higher efficiency in recent years in order to address environmental concerns. However, knock induced by abnormal combustion in spark-ignition engines has impeded efforts to attain higher efficiency. Knock characteristics during abnormal combustion were investigated in this study by in-cylinder visualization and spectroscopic measurements using a four-stroke air-cooled single-cylinder engine. The results revealed that knock intensity and the manner in which the autoignited flame propagated in the end gas differed depending on the engine speed.
Technical Paper

Analysis of Supercharged HCCI Combustion Using Low-Carbon Alternative Fuels

2017-11-05
2017-32-0085
This study investigated the effects of recirculated exhaust gas (EGR) and its principal components of N2, CO2 and H2O on moderating Homogeneous Charge Compression Ignition (HCCI) combustion. Experiments were conducted using two types of gaseous fuel blends of DME/propane and DME/methane as the test fuels. The addition rates of EGR, N2, CO2 and H2O were varied and the effects of each condition on HCCI combustion of propane and methane were investigated. The results revealed that the addition of CO2 and H2O had the effect of substantially delaying and moderating rapid combustion. The addition of N2 showed only a slight delaying and moderating effect. The addition of EGR had the effect of optimally delaying the combustion timing, while either maintaining or increasing the indicated mean effective pressure and indicated thermal efficiency ηi.
Technical Paper

A Study on the Knocking Characteristics of an SI-HCCI Engine by Using In-Cylinder Visualization

2016-11-08
2016-32-0005
In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
Technical Paper

A Study of Knocking in a Lean Mixture Using an Optically Accessible Engine

2016-11-08
2016-32-0002
Improving the thermal efficiency of internal combustion engines requires operation under a lean combustion regime and a higher compression ratio, which means that the causes of autoignition and pressure oscillations in this operating region must be made clear. However, there is limited knowledge of autoignition behavior under lean combustion conditions. Therefore, in this study, experiments were conducted in which the ignition timing and intake air temperature (scavenging temperature) of a 2-stroke optically accessible test engine were varied to induce autoignition under a variety of conditions. The test fuel used was a primary reference fuel with an octane rating of 90. The results revealed that advancing the ignition timing under lean combustion conditions also advanced the autoignition timing, though strong pressure oscillations on the other hand tended not to occur.
Technical Paper

Influence of Supercharging and EGR on Multi-stage Heat Release in an HCCI Engine

2016-11-08
2016-32-0009
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest as a combustion system that offers the advantages of high efficiency and low exhaust emissions. However, it is difficult to control the ignition timing in an HCCI combustion system owing to the lack of a physical means of initiating ignition like the spark plug in a gasoline engine or fuel injection in a diesel engine. Moreover, because the mixture ignites simultaneously at multiple locations in the cylinder, it produces an enormous amount of heat in a short period of time, which causes greater engine noise, abnormal combustion and other problems in the high load region. The purpose of this study was to expand the region of stable HCCI engine operation by finding a solution to these issues of HCCI combustion.
Technical Paper

Influence of Calcium-Based Additives with Different Properties on Abnormal Combustion in an SI Engine

2016-11-08
2016-32-0007
Technologies for further improving vehicle fuel economy have attracted widespread attention in recent years. However, one problem with some approaches is the occurrence of abnormal combustion such as low-speed pre-ignition (LSPI) that occurs under low-speed, high-load operating conditions. One proposed cause of LSPI is that oil droplets diluted by the fuel enter the combustion chamber and become a source of ignition. Another proposed cause is that deposits peel off and become a source of ignition. A four-stroke air-cooled single-cylinder engine was used in this study to investigate the influence of Ca-based additives having different properties on abnormal combustion by means of in-cylinder visualization and absorption spectroscopic measurements. The results obtained for neutral and basic Ca-based additives revealed that the former had an effect on advancing the time of autoignition.
Technical Paper

A Study of HCCI Operating Range Expansion by Applying Reaction Characteristics of Low-Carbon Alternative Fuels

2016-11-08
2016-32-0011
Issues that must be addressed to make Homogeneous Charge Compression Ignition (HCCI) engines a practical reality include the difficulty of controlling the ignition timing and suppression of rapid combustion under high load conditions. Overcoming these issues to make HCCI engines viable for practical application is indispensable to the further advancement of internal combustion engines. Previous studies have reported that the operating region of HCCI combustion can be expanded by using DME and Methane blended fuels.(1), (2), (3), (4), (5) The reason is that the reaction characteristics of these two low-carbon fuels, which have different ignition properties, have the effect of inducing heat release in two stages during main combustion, thus avoiding excessively rapid combustion. However, further moderation of rapid combustion in high-load region is needed to expand the operation region. This study focused on supercharging and use of blended fuels.
Journal Article

Influence of Ca-, Mg- and Na-Based Engine Oil Additives on Abnormal Combustion in a Spark-Ignition Engine

2015-11-17
2015-32-0771
One issue of downsized and supercharged engines is low-speed pre-ignition (LSPI) that occurs in the low-speed and high-load operating region. One proposed cause of LSPI is the influence of the engine oil and its additives. However, the effect of engine oil additives on pre-ignition and the mechanism involved are still not fully understood. This study investigated the influence of engine oil additives on abnormal combustion in a spark-ignition engine. A four-stroke air-cooled single-cylinder engine with a side valve arrangement was used in conducting combustion experiments. The research methods used were in-cylinder pressure analysis, in-cylinder visualization and absorption spectroscopic analysis. Engine oil additives were mixed individually at a fixed concentration into a primary reference fuel with an octane number of 50 and their effect on knocking was investigated.
Technical Paper

Influence of Internal EGR on Knocking in an HCCI Engine

2015-11-17
2015-32-0807
Homogeneous Charge Compression Ignition (HCCI) engines have attracted much attention and are being widely researched as engines characterized by low emissions and high efficiency. However, one issue of HCCI engines is their limited operating range because of the occurrence of rapid combustion at high loads and misfiring at low loads. It is known that knocking accompanied by in-cylinder pressure oscillations also occurs in HCCI engines at high loads, similar to knocking seen in spark-ignition engines. In this study, HCCI combustion accompanied by in-cylinder pressure oscillations was visualized by taking high-speed photographs of the entire bore area. In addition, the influence of internal exhaust gas circulation (EGR) on HCCI knocking was also investigated. The visualized combustion images revealed that rapid autoignition occurred in the end-gas region during the latter half of the HCCI combustion process when accompanied by in-cylinder pressure oscillations.
Technical Paper

Experimental and Numerical Study of HCCI Combustion using Cooled EGR

2015-11-17
2015-32-0770
Unresolved issues of Homogeneous Charge Compression Ignition (HCCI) combustion include an extremely rapid pressure rise on the high load side and resultant knocking. Studies conducted to date have examined ways of expanding the region of stable HCCI combustion on the high load side such as by applying supercharging or recirculating exhaust gas (EGR). However, the effect of applying EGR gas to supercharged HCCI combustion and the mechanisms involved are not fully understood. In this study, the effect of EGR gas components on HCCI combustion was investigated by conducting experiments in which external EGR gas was applied to supercharged HCCI combustion and also experiments in which nitrogen (N2) and carbon dioxide (CO2) were individually injected into the intake air pipe to simulate EGR gas components. In addition, HCCI combustion reactions were analyzed by conducting chemical kinetic simulations under the same conditions as those of the experiments.
Technical Paper

A Study on the Practical Application of Cellulosic Liquefaction Fuel for Diesel Engine

2015-11-17
2015-32-0801
In recent years, it has been expected the conversion of wasted biomass to industry available energy. In this study, 80 wt.% of wood and 20 wt.% of polypropylene were liquefied by the mineral oil used as solvent. The liquefied material was distilled, and distillation fraction of temperature from 493 to 573 K was recognized as light oil fraction CLF (Cellulose Liquefaction Fuel) and that from 378 to 493 K was recognized as naphtha fraction CLF. CLFs were blended with light oil and, in engine performance test, mixing ratio of light oil fraction CLF was 5 wt.%, and in vehicle running test, weight mixing ratios were 5 or 10 wt.%. In engine performance test, indicator diagrams and rate of heat releases of light oil fraction CLF 5 wt.% mixed light oil were almost equivalent to those of light oil in all load conditions, and engine performance and exhaust gas emissions were also almost equivalent to light oil.
Journal Article

A Study of the Behavior of In-Cylinder Pressure Waves under HCCI Knocking by using an Optically Accessible Engine

2015-09-01
2015-01-1795
This study investigated the origin of knocking combustion accompanied by pressure wave and strong pressure oscillations in a Homogeneous Charge Compression Ignition (HCCI) engine. Experiments were conducted with a two-stroke single cylinder optically accessible engine that allowed the entire bore area to be visualized. The test fuel used was n-heptane. The equivalence ratio and intake temperature were varied to induce a transition from moderate HCCI combustion to extremely rapid HCCI combustion accompanied by in-cylinder pressure oscillations. Local autoignition and pressure wave behavior under each set of operating conditions were investigated in detail on the basis of high-speed in-cylinder visualization and in-cylinder pressure analysis. As a result, under conditions where strong knocking occurs, a brilliant flame originates from the burned gas side in the process where the locally occurring autoignition gradually spreads to multiple locations.
X