Refine Your Search

Topic

Search Results

Journal Article

Towards Brand-Independent Architectures, Components and Systems for Next Generation Electrified Vehicles Optimised for the Infrastructure

2022-03-29
2022-01-0918
E-mobility is a game changer for the automotive domain. It promises significant reduction in terms of complexity and in terms of local emissions. With falling prices and recent technological advances, the second generation of electric vehicles (EVs) that is now in production makes electromobility an affordable and viable option for more and more transport mission (people, freight). Still, major challenges for large scale deployment remain. They include higher maturity with respect to performance (e.g., range, interaction with the grid), development efficiency (e.g., time-to-market), or production costs. Additionally, an important market transformation currently occurs with the co-development of automated driving functions, connectivity, mobility-as-a-service. New opportunities arise to customize road transportation systems toward application-driven, user-centric smart mobility solutions.
Journal Article

E-Mobility-Opportunities and Challenges of Integrated Corner Solutions

2021-04-06
2021-01-0984
E-mobility is a game changer for the automotive domain. It promises significant reduction in terms of complexity and in terms of local emissions. With falling prices and recent technological advances, the second generation of electric vehicles (EVs) that is now in production makes electromobility an affordable and viable option for more and more transport mission (people, freight). Current e-vehicle platforms still present architectural similarities with respect to combustion engine vehicle (e.g., centralized motor). Target of the European project EVC1000 is to introduce corner solutions with in-wheel motors supported by electrified chassis components (brake-by-wire, active suspension) and advanced control strategies for full potential exploitation. Especially, it is expected that this solution will provide more architectural freedom toward “design-for-purpose” vehicles built for dedicated usage models, further providing higher performances.
Journal Article

Hardware and Virtual Test-Rigs for Automotive Steel Wheels Design

2020-04-14
2020-01-1231
The aim of this paper is to study in deep the peculiar test-rigs and experimental procedures adopted to the fulfilment of the principal requirements of automotive steel wheels, in particular regarding fatigue damaging. In the discussion, the standard requirements, the OEM specifications and the dimensional and geometric tolerances are approached. As result of an increasingly necessity to improve the performance of the components, innovative virtual test benches are presented. Differently from their traditional precursors, virtual test-rigs give an extended view of the physical behaviour of the component as the possibility to monitor stress-strain distribution in deep. In the first section, the state of the art and the specifications are listed. Secondly, the adopted hardware test-rigs as the experimental tests are described in detail. In the third one, proposed virtual test-rig is discussed.
Journal Article

The Application of Control and Wheel Torque Allocation Techniques to Driving Modes for Fully Electric Vehicles

2014-04-01
2014-01-0085
The combination of continuously-acting high level controllers and control allocation techniques allows various driving modes to be made available to the driver. The driving modes modify the fundamental vehicle performance characteristics including the understeer characteristic and also enable varying emphasis to be placed on aspects such as tire slip and energy efficiency. In this study, control and wheel torque allocation techniques are used to produce three driving modes. Using simulation of an empirically validated model that incorporates the dynamics of the electric powertrains, the vehicle performance, longitudinal slip and power utilization during straight-ahead driving and cornering maneuvers under the different driving modes are compared.
Journal Article

A Novel Seamless 2-Speed Transmission System for Electric Vehicles: Principles and Simulation Results

2011-06-09
2011-37-0022
This article deals with a novel 2-speed transmission system specifically designed for electric axle applications. The design of this transmission permits seamless gearshifts and is characterized by a simple mechanical layout. The equations governing the overall system dynamics are presented in the paper. The principles of the control system for the seamless gearshifts achievable by the novel transmission prototype - currently under experimental testing at the University of Surrey and on a prototype vehicle - are analytically demonstrated and detailed through advanced simulation tools. The simulation results and sensitivity analyses for the main parameters affecting the overall system dynamics are presented and discussed.
Technical Paper

Experimental Validation of a Heavy Goods Vehicle Fuel Consumption Model

2011-04-12
2011-01-1234
Over the last decade the simulation of driving cycles through longitudinal vehicle models has become an important stage in the design, analysis and selection of vehicle powertrains. This paper presents an overview of existing software packages, along with the development of a new multipurpose driving cycle simulator implemented in the Matlab/Simulink environment. In order to evaluate the performance of the simulator, a MAN TGL 12.240 multi-usage delivery vehicle was fitted with a CAN-bus data logger and used to create a series of ‘real-life’ drive cycles. These were inputted into the vehicle model and the simulated fuel mass flow-rate and engine rotational speed were compared to those experimentally obtained.
Journal Article

Vehicle Simulation for the Development of an Active Suspension System for an Agricultural Tractor

2009-05-13
2009-01-1608
The design of suspension systems for heavy-duty vehicles covers a specific field of automotive industry. The proposed work focuses on the design development of a front controllable suspension for an agricultural tractor capable to satisfy the system requirements under different operating conditions. The design of the control algorithms is based on the developed multibody model of the actual tractor, including the pitch motion of the sprung mass, the anti-dive effects during braking and forward-reverse maneuvers and the non-linear dynamics of the actuation system. For an advanced analysis, a novel thermo-hydraulic model of the hydraulic system has been implemented. Several semi-active damping controls are analyzed for the specific case study.
Technical Paper

Multi-body Versus Block-Oriented Approach in Suspension Dynamics of a Military Tracked Tank

2009-04-20
2009-01-0443
The superior mobility of a military vehicle provides the combat crew with a tactical advantage through increased cross country speed. The suspension system plays a fundamental role in evaluating a vehicle mobility. A mathematical model that allows realistic simulations of vehicles operating in a wide spectrum of environmental conditions may help to lower costs and time required during their development. The paper concerns with vehicle-terrain interaction modeling, for a military tracked tank, through multi-body and block-oriented approaches. It is focused on the consequences that the suspension system has got on the comfort and on the performance. Thus through a multi-body software a realistic three dimensional model of a tracked fighting vehicle is developed. This virtual model confirms some experimental data available on its longitudinal dynamics. In order to simplify the multi-body simulations, a block-oriented approach is adopted to develop a model of the same vehicle.
Technical Paper

Tire Thermal Model for Enhanced Vehicle Dynamics Simulation

2009-04-20
2009-01-0441
Brush models permit a more physical simulation of tire performance in comparison with models based on empirical formulas. The paper presents an empirical model for the estimation of tire temperature as function of the actual working conditions of the component. The estimated temperature values enter a tire brush model and provoke the variation of the performance in terms of tangential forces. The model can be empirically tuned through experimental data showing the variation of tire performance as function of temperature. The experimental validation of the model is dealt with in detail.
Journal Article

Torque Gap Filler for Automated Manual Transmissions: Principles for the Development of the Control Algorithm

2009-04-20
2009-01-0952
One of the most significant tasks in automotive design is related to the implementation of gearboxes capable of reducing the torque gap during the gearshift process and, at the same time, not decreasing vehicle performance from the point of view of driveline efficiency. Automated gearboxes based on torque converters ([1], [2]) satisfy the first requirement but not the second. On the other hand, manual automated gearboxes ([3], [4], [5], [6]) satisfy the requirements in terms of consumption, due to the absence of the dissipations caused by the torque converter. In fact, they consist of the basic layout of a manual transmission with hydraulic or electromechanical actuators which are adopted for the clutch and the synchronizers. However, automated manual transmissions cannot guarantee optimal longitudinal dynamics of the vehicle due to the discontinuity in torque transmission when the clutch is disengaged.
Technical Paper

Racing Simulation of a Formula 1 Vehicle with Kinetic Energy Recovery System

2008-12-02
2008-01-2964
This paper deals with the development of a Lap Time Simulator in order to carry out a first approximate evaluation of the potential benefits related to the adoption of the Kinetic Energy Recovery System (KERS). KERS will be introduced in the 2009 Formula 1 Season. This system will be able to store energy during braking and then use it in order to supply an extra acceleration during traction. Different technologies (e.g. electrical, hydraulic and mechanical) could be applied in order to achieve this target. The lap time simulator developed by the authors permits to investigate the advantages both in terms of fuel consumption reduction and the improvement of the lap time.
Technical Paper

Driveline Modeling, Experimental Validation and Evaluation of the Influence of the Different Parameters on the Overall System Dynamics

2008-04-14
2008-01-0632
The paper presents the driveline models conceived by the author in order to evaluate the main parameters for an optimal tuning of the driveline of a passenger vehicle. The paper deals with a full modal analysis of the contributions of the different parts. The implemented models permit to consider the non-linear driveline dynamics, including the effect of the clutch damper (in terms of non-linear stiffness and variable amplitude hysteresis in the case of the models in the time domain) and the halfshafts, the engine mounting system and the tires. The influence of each component of the driveline on the overall frequency response of the system is presented. In particular, the paper demonstrates that the tire can be modeled like a non-linear damper within the rotational dynamics of the driveline and that it is the fundamental component contributing to the first order dynamics of the transmission.
Technical Paper

Block-oriented Models of Torque Gap Filler Devices for AMT Transmissions

2008-04-14
2008-01-0631
Vehicles equipped with Automated Manual Transmissions (AMT) for gear shift control show many advantages in terms of reduction of fuel consumption and improvement of driving comfort and shifting quality. In order to increase both performance and efficiency, an important target is focused on the minimization of the typical torque interruption during the gear shift, especially in front of the conventional automatic transmission. Recently, AMT are proposed to be connected with planetary gears and friction brakes, in order to reduce the torque gap during the gear change process. This paper is focused on a block-oriented simulation methodology developed in Matlab/Simulink/Stateflow® environment, able to simulate the performance of a complete FWD powertrain and in particular to predict dynamic performance and overall efficiency of the AMT with innovative Torque Gap Filler devices (TGF).
Technical Paper

Enhanced Tire Brush Model for Vehicle Dynamics Simulation

2008-04-14
2008-01-0595
The aim of this paper is the conception of a tire model which allows a good fit with the physical experimental behavior of the component. In the meanwhile, the model should be simple enough to permit real time vehicle dynamics simulation, in the same way as the diffused Pacejka's model. The paper discusses the influence of the model for the estimation of contact patch properties on the overall tire forces and moments. It demonstrates that unrealistic models of the contact patch can lead to a good fit with the experimental data (in terms of forces and self-aligning moment), even if the real physics of the tire is not reproduced. A realistic model implies a significant reduction of the stiffness of the brushes as a function of the vertical load between the tire and the road surface.
Technical Paper

Friction inside Wheel Hub Bearings: Evaluation through Analytical Models and Experimental Methodologies

2007-09-16
2007-24-0138
This paper presents an experimental methodology which can be adopted to measure the friction torque of the bearings in the wheel hubs of passenger vehicles. The first section of the paper highlights the reasons why an experimental device is necessary to have an objective evaluation of the performance of the bearing in terms of friction. In particular, the high level of approximation of the current formulas for the estimation of the friction inside a single bearing is discussed and demonstrated. An analytical methodology for the evaluation of the distribution of the axial load between the two bearings of the wheel hub is presented. However, its practical application for the precise calculation of the distribution of the load has to be checked through experimental tests.
Technical Paper

Vehicle Dynamics Simulation to Develop an Active Roll Control System

2007-04-16
2007-01-0828
Active Roll Control (ARC) is one of the most promising active systems to improve vehicle comfort and handling. This paper describes the simulation based procedure adopted to conceive a double-channel Active Roll Control system, characterized by the hydraulic actuation of the stabilizer bars of a sedan. The first part of the paper presents the vehicle model adopted for this activity. It is Base Model Simulator (BMS), the 14 Degrees-of-Freedom vehicle model by Politecnico di Torino. It was validated through road tests. Then the paper describes the development of the control algorithm adopted to improve the roll dynamics of the vehicle. The implemented control algorithm is characterized by a first subsystem, capable of obtaining the desired values of body roll angle as a function of lateral acceleration during semi-stationary maneuvers.
Technical Paper

Virtual and Experimental Analysis of Brake Assist Systems

2006-04-03
2006-01-0477
The paper deals with the virtual and experimental analysis of two commercial Mechanical Brake Assist systems. They are described in detail, then modeled and experimentally evaluated through a Hardware-In-the-Loop test bench and road tests. Three different kinds of drivers are compared, from the point of view of the performance increase promised by Brake Assist during an emergency brake maneuver. The three driver types are based on the measurement of the behavior of real drivers, as it is presented in specific research activities in literature.
Technical Paper

Block-oriented Models for Transient HVAC Simulations

2005-05-10
2005-01-2002
An improved block-oriented simulation methodology of vehicle air conditioning systems has been developed, based on dynamic and thermodynamic formulations of automotive components. The method applied considers any system as dynamic and the steady-state as a particular condition reached during transient states. Therefore it is necessary for every component of the system to define the dynamic laws, the dynamic constants and to impose the initial conditions. A few examples of modeled components are described in order to show the consistency of the thermodynamic differential approach and input/output relations between subsystems. An alternative approach of experimental look-up tables with respect to the thermodynamic differential method has also been applied, whenever it was convenient in terms of calculation improvements.
Technical Paper

Hardware-In-the-Loop to Evaluate Active Braking Systems Performance

2005-04-11
2005-01-1580
The paper shortly describes an ABS/ESP Hardware-In-the-Loop (HIL) test bench built by the Vehicle Dynamics Team of the Department of Mechanics of Politecnico di Torino. It consists of a whole brake system, integrated through specific interface (e.g. wheel pressures signals) with a vehicle model running in real time on a dSPACE® board. Different commercial ABS strategies are compared, in a large spectrum of manoeuvres: slow brake apply manoeuvres, panic brake manoeuvres, μ-split brake manoeuvres, brake manoeuvres with a sudden variation of the friction coefficient between tyres and ground. The paper deals with the generation of all the signals required for activating a commercial ESP: steering wheel angle, body yaw rate, body lateral acceleration, engine control, etc… Some of them are transmitted by CAN. Typical handling manoeuvres are used to test the ESP: step steer, double step steer, ramp steer, etc… Several brake manoeuvres are simulated while turning.
Technical Paper

Base Model Simulator (BMS) - A Vehicle Dynamics Model to Evaluate Chassis Control Systems Performance

2005-04-11
2005-01-0401
Chassis Control Systems development methodology is nowadays strongly based on analyzing performance by using PC vehicle dynamics simulation. Generally, the overall design, test bench and road validation process is continuously accompanied by simulation. The Base Model Simulator was developed by the Vehicle Dynamics Group at the Department of Mechanics of Politecnico di Torino both to satisfy this requirement and for educational purposes. It considers a complete vehicle dynamics mathematical model, including driver, powertrain, driveline, vehicle body, suspensions, steering system, brakes, tires. The Base Model Simulator takes in account the suspensions system elastokinematics, including, for example, automatic computation of camber variation during the vehicle roll motions. Tire model considered are either Pacejka's models or experimental data.
X