Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Study on Combustion Chamber Geometry Effects in an HCCI Engine Using High-Speed Cycle-Resolved Chemiluminescence Imaging

2007-04-16
2007-01-0217
The aim of this study is to see how geometry generated turbulence affects the Rate of Heat Release (ROHR) in an HCCI engine. HCCI combustion is limited in load due to high peak pressures and too fast combustion. If the speed of combustion can be decreased the load range can be extended. Therefore two different combustion chamber geometries were investigated, one with a disc shape and one with a square bowl in piston. The later one provokes squish-generated gas flow into the bowl causing turbulence. The disc shaped combustion chamber was used as a reference case. Combustion duration and ROHR were studied using heat release analysis. A Scania D12 Diesel engine, converted to port injected HCCI with ethanol was used for the experiments. An engine speed of 1200 rpm was applied throughout the tests. The effect of air/fuel ratio and combustion phasing was also studied.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

Simultaneous PLIF Measurements for Visualization of Formaldehyde- and Fuel- Distributions in a DI HCCI Engine

2005-10-24
2005-01-3869
Simultaneous laser induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a direct-injection HCCI engine. A mix of N-heptane and iso-octane was used as fuel and Toluene as fluorescent tracer. The experimental setup involves two pulsed Nd:YAG lasers and two ICCD cameras. Frequency quadrupled laser radiation at 266 nm from one of the Nd:YAG lasers was used for excitation of the fuel tracer. The resulting fluorescence was detected with one of the ICCD cameras in the spectral region 270-320 nm. The second laser system provided frequency tripled radiation at 355 nm for excitation of Formaldehyde. Detection in the range 395-500 nm was achieved with the second ICCD. The aim of the presented work is to investigate the applicability of utilizing formaldehyde as a naturally occurring fuel marker. Formaldehyde is formed in the low temperature reactions (LTR) prior to the main combustion and should thus be present were fuel is located until it is consumed.
Technical Paper

Simultaneous Formaldehyde and Fuel-Tracer LIF Imaging in a High-Speed Diesel Engine With Optically Accessible Realistic Combustion Chamber

2005-09-11
2005-24-008
Simultaneous laser-induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a high-speed diesel engine. N-heptane and isooctane were used as fuel and toluene was used as a tracer. This arrangement made it possible to make simultaneous measurements of toluene by exciting at 266 nm and detecting at 270-320 nm while exciting formaldehyde at 355 nm and detecting at 400-500 nm. The aim of this study is to investigate how traditional fuel tracer and natural-occurring formaldehyde formed in the cool chemistry are transported in the piston bowl. A range of ignition delays were created by running the engine with different amounts of EGR. During this sweep the area where the low-temperature reactions take place were studied. The measurements were performed in a 0.5-l, single-cylinder optical engine running under conditions simulating a cruise-point, i.e., about 2.2 bar imep.
Technical Paper

The HCCI Combustion Process in a Single Cycle - Speed Fuel Tracer LIF and Chemiluminescence Imaging

2002-03-04
2002-01-0424
The Homogeneous Charge Compression Ignition (HCCI) combustion progress has been characterized by means of high-speed fuel tracer Planar Laser Induced Fluorescence (PLIF) combined with simultaneous chemiluminescence imaging. Imaging has been conducted using a high-speed laser and detector system. The system can acquire a sequence of eight images within less than one crank angle. The engine was run at 1200 rpm on iso-octane or ethanol and a slight amount of acetone was added as a fuel tracer, providing a marker for the unburned areas. The PLIF sequences showed that, during the first stage of combustion, a well distributed decay of fuel concentration occurs. During the later parts of the combustion process the fuel concentration images present much more structure, with distinct edges between islands of unburned fuel and products.
Technical Paper

Reacting Boundary Layers in a Homogeneous Charge Compression Ignition (HCCI) Engine

2001-03-05
2001-01-1032
An experimental and computational study of the near-wall combustion in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted by applying laser based diagnostic techniques in combination with numerical modeling. Our major intent was to characterize the combustion in the velocity- and thermal boundary layers. The progress of the combustion was studied by using fuel tracer LIF, the result of which was compared with LDA measurements of the velocity boundary layer along with numerical simulations of the reacting boundary layer. Time resolved images of the PLIF signal were taken and ensemble averaged images were calculated. In the fuel tracer LIF experiments, acetone was seeded into the fuel as a tracer. It is clear from the experiments that a proper set of backgrounds and laser profiles are necessary to resolve the near-wall concentration profiles, even at a qualitative level.
X