Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Fuel Economy Potential of Advanced AMT eCoast Feature in Long-Haul Applications

2014-09-30
2014-01-2324
In the recent years, Automated Manual Transmissions have become more popular for class 8 heavy trucks. Besides the benefits of smoother gear changes and reduced driver fatigue, AMTs can also greatly reduce fuel consumption by using optimized shifting strategies and advanced controls. The Detroit DT12 AMT demonstrated its ability to save fuel over a standard AMT, due in part to its eCoast feature. eCoast relies on intelligent and advanced electronic controls to safely allow the vehicle to coast on downgrades. While the engine is idling, the drag parasitic energy losses are decreased and the vehicle can fully use its momentum to travel further up and down hill. As one could expect, the type of route profile can greatly affect the fuel savings due to eCoast, since more hilly terrains might offer more opportunities to activate eCoast than flatter roads.
Technical Paper

Impact of Advanced Technologies on Medium-Duty Trucks Fuel Efficiency

2010-10-05
2010-01-1929
Rising fuel costs, increased regulations, and heightened customer sensitivity to energy efficiency has prompted the evaluation of numerous powertrain technology improvements to introduce into production. The actual impact of such technologies can differ broadly, depending on the technology or application. To evaluate the fuel consumption impact, various baseline vehicles have been created and simulated by using Argonne National Laboratory's vehicle modeling and simulation tool, the Powertrain Systems Analysis Toolkit (PSAT). This paper provides a quantitative evaluation of several technologies or combinations of technologies. First, we assess the impact of single technologies, including vehicle/chassis characteristics, such as weight, aerodynamics, or rolling resistance. Next, we consider advanced powertrain technologies, ranging from dieselization to transmissions with a higher gear number, and hybridization.
Technical Paper

Modeling the Hybridization of a Class 8 Line-Haul Truck

2010-10-05
2010-01-1931
Hybrid electric vehicles have demonstrated their ability to significantly reduce fuel consumption for several medium- and heavy-duty applications. In this paper we analyze the impact on fuel economy of the hybridization of a tractor-trailer. The study is done in PSAT (Powertrain System Analysis Toolkit), which is a modeling and simulation toolkit for light- and heavy-duty vehicles developed by Argonne National Laboratory. Two hybrid configurations are taken into account, each one of them associated with a level of hybridization. The mild-hybrid truck is based on a parallel configuration with the electric machine in a starter-alternator position; this allows start/stop engine operations, a mild level of torque assist, and a limited amount of regenerative braking. The full-hybrid truck is based on a series-parallel configuration with two electric machines: one in a starter-alternator position and another one between the clutch and the gearbox.
Technical Paper

Validation of a Line-Haul Class 8 Combination Truck

2010-10-05
2010-01-1998
The U.S. Environmental Protection Agency instrumented and tested a line-haul Class 8 tractor trailer on a 4-wheel-drive heavy-duty chassis dynamometer. A vehicle model was then developed in the Powertrain Systems Analysis Toolkit (PSAT), Argonne National Laboratory's vehicle simulation tool, using the truck technical specifications and the recorded data, which included the Portable Emissions Measurement System (PEMS) and Controller Area Network (CAN) signals. In this paper, we describe the test scenarios and the analysis performed on the data. We then present the vehicle model and assumptions. Finally, we compare the test and simulation data, including fuel consumption and component signals, as well as the main challenges specific to heavy-duty vehicle testing and simulation.
X