Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

The Effect of Application Air Pressure on Brake Stroke Measurements from 70 to 125 psi

2015-09-29
2015-01-2833
Brake chamber construction allows for a finite stroke for pushrods during brake application. As such, the Federal Motor Carrier Safety Regulations (FMCSRs) mandate maximum allowable strokes for the various chamber types and sizing. Brake strokes are often measured during compliance inspections and post-accident investigations in order to assess vehicle braking performance and/or capability. A number of studies have been performed, and their results published, regarding the effect of brake stroke and function on braking force and heavy truck stopping performance [1] through [4]. All of the studies have relied on a brake supply pressure of 100 pounds per square inch (psi). When brake strokes are measured in the field, following the Commercial Vehicle Safety Alliance (CVSA) procedure, the application pressure is prescribed to be maintained between 90 and 100 psi.
Journal Article

Application of Air Brake Performance Relationships in Accident Reconstruction and Their Correlation to Real Vehicle Performance

2012-04-16
2012-01-0609
This research paper builds onto the wealth of technical information that has been published in the past by engineers such as Flick, Radlinski, and Heusser. For this paper, the pushrod force versus chamber pressure data published by Heusser are supplemented with data taken from brake chamber types not reported on by Heusser in 1991. The utility of Heusser's braking force relationships is explored and discussed. Finally, a straightforward and robust method for calculating truck braking performance, based on the brake stroke measurements and published heavy truck braking test results, is introduced and compared to full-scale vehicle test data.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

The Development of a Heavy Truck ABS Model

2005-04-11
2005-01-0413
This paper discusses the improvement of a heavy truck anti-lock brake system (ABS) model currently used by the National Highway Traffic Safety Administration (NHTSA) in conjunction with multibody vehicle dynamics software. Accurate modeling of this complex system is paramount in predicting real-world dynamics, and significant improvements in model accuracy are now possible due to recent access to ABS system data during on-track experimental testing. This paper focuses on improving an existing ABS model to accurately simulate braking under limit braking maneuvers on high and low-coefficient surfaces. To accomplish this, an ABS controller model with slip ratio and wheel acceleration thresholds was developed to handle these scenarios. The model was verified through testing of a Class VIII 6×4 straight truck. The Simulink brake system and ABS model both run simultaneously with TruckSim, with the initialization and results being acquired through Matlab.
Technical Paper

Braking of Commercial Vehicles Equipped with Air-Disc Brakes from High Speed - Effects on Stopping Distance

2005-04-11
2005-01-0397
Due to increased speed limits at the state level, NHTSA has pursued additional testing of heavy trucks at higher test maneuver entry speeds. Test results from three vehicles, a Class 7 school bus, a Class 8 truck tractor and a Class 8 straight-truck are presented here. Results are discussed for full treadle straight-ahead stops from 60, 70 and 75 mph. Each vehicle was tested with two different brake configurations. As expected, higher entry speeds resulted in increased stopping distances. Causes for increased stopping distances are briefly discussed. Comparisons show that vehicles in the hybrid configuration (air-disc brakes on steer axle and S-cam brakes on drive axle(s)) had superior stopping performance to the vehicles equipped with traditional S-cam brakes. The vehicles in the hybrid configuration were less susceptible to increased stopping distances from higher entry speeds.
Technical Paper

The Effects of Foundation Brake Configuration on Class-8 Tractor Dry Stopping Performance

2004-10-26
2004-01-2701
This paper discusses dry stopping performance comparisons of various foundation brake systems on Class-8 truck tractors (having a GVWR greater than 33,000 lbs.). For these studies, four configurations of foundation brakes were fitted to two modern 6x4 conventional truck tractors without modification to the control, application, or ABS systems. Foundation brakes compared include standard S-cam drum brakes on all six positions, high-output S-cam drum and then air disc brakes on the steer axles, and air disc brakes on all six brake positions. Discussions include analyses of stopping distance from 60 mph (96.6 kph) for all test conditions. The truck tractors were tested in two weight configurations, LLVW (i.e., bobtail) and GVWR (50,000 lbs. total axle weight, using an unbraked control semitrailer).
Technical Paper

The Effects of Foundation Brake Configuration on Class-8 Tractor Wet Stopping Performance and Stability

2004-10-26
2004-01-2702
This paper discusses wet stopping performance and stability comparisons of various foundation brake systems on Class-8 truck tractors (having a GVWR greater than 33,000 lbs.). For these studies, four configurations of foundation brakes were fitted to two modern 6×4 conventional truck tractors without modification to the control, application, or ABS systems. The foundation brakes compared include standard S-cam drum brakes on all six positions, two hybrid configurations (high-output S-cam drum and then air disc brakes on the steer axles), and air disc brakes on all six brake positions. The truck tractors were tested in two weight configurations, LLVW and GVWR using an unbraked control semitrailer. Analytical analyses of wet brake-in-curve testing indicate that the hybrid brake systems (employing higher-torque brakes on the steer axle only) might degrade brake-incurve performance. This disadvantage appeared to exist for both load conditions.
Technical Paper

New Model for Simulating the Dynamics of Pneumatic Heavy Truck Brakes with Integrated Anti-Lock Control

2003-03-03
2003-01-1322
This paper introduces a new nonlinear model for simulating the dynamics of pneumatic-over-mechanical commercial vehicle braking systems. The model employs an effective systems approach to accurately reproduce forcing functions experienced at the hubs of heavy commercial vehicles under braking. The model, which includes an on-off type ABS controller, was developed to accurately simulate the steer, drive, and trailer axle drum (or disc) brakes on modern heavy commercial vehicles. This model includes parameters for the pneumatic brake control and operating systems, a 4s/4m (four sensor, four modulator) ABS controller for the tractor, and a 2s/2m ABS controller for the trailer. The dynamics of the pneumatic control (treadle system) are also modeled. Finally, simulation results are compared to experimental data for a variety of conditions.
Technical Paper

Empirical Models for Commercial Vehicle Brake Torque from Experimental Data

2003-03-03
2003-01-1325
This paper introduces a new series of empirical mathematical models developed to characterize brake torque generation of pneumatically actuated Class-8 vehicle brakes. The brake torque models, presented as functions of brake chamber pressure and application speed, accurately simulate steer axle, drive axle, and trailer tandem brakes, as well as air disc brakes (ADB). The contemporary data that support this research were collected using an industry standard inertia-type brake dynamometer, routinely used for verification of FMVSS 121 commercial vehicle brake standards.
X