Refine Your Search

Topic

null

Search Results

Technical Paper

Identification of Low Vibration Damping Areas on Automotive Door Panel and Improvement Using Natural Fibers

2024-04-09
2024-01-2338
Vibrations constitute a pivotal factor affecting passenger comfort and overall vehicle performance in both Conventional Internal Combustion Engine (ICE) vehicles and Electric Vehicles (EVs). These vibrations emanate from various sources, including vehicle design and construction, road conditions, and driving patterns, thereby leading to passenger discomfort and fatigue. In the pursuit of mitigating these issues, natural fibers, known for their exceptional damping properties, have emerged as innovative materials for integration into the automotive industry. Notably, these natural fiber-based materials offer a cost-effective alternative to traditional materials for vibration reduction. This research focuses on evaluating natural fibers mainly hemp, jute and cotton fibers for their damping characteristics when applied to a steel plate commonly used in the automotive sector.
Technical Paper

Exploring Natural Frequency and Damping in Coir-Rubber Polymer Composites for Vibration Control in Mobility Vehicles

2024-04-09
2024-01-2357
This study delves into the dynamic properties of hybrid composite materials, specifically focusing on the natural frequency and modal damping characteristics of Coir Fiber-Rubber Particles Reinforced Polymer Composites (CRP). Comprehensive experimental investigations were conducted utilizing an FFT analyzer. Initial experiments involved the preparation of specimens with varying rubber content, ranging from 2% to 5%. Coir, known for its cellulose-rich composition, was selected due to its innate damping properties, making it highly effective in mitigating vibrations. The primary motivation behind this research is to provide cost-effective solutions for reducing vibrations in mobility vehicles, addressing challenges associated with passenger comfort, durability, and overall performance. The study yielded promising results, with CRP exhibiting substantial reductions in vibrations.
Technical Paper

Enhancement of Physical and Mechanical Attributes of a Natural Fiber-Reinforced Composite for Engineering Applications

2024-04-09
2024-01-2237
A natural fiber based polymer composite has the advantage of being more environment-friendly from a life cycle standpoint when compared to composites reinforced with widely-used synthetic fibers. The former category of composites also poses reduced health risks during handling, formulation and usage. In the current study, jute polymer laminates are studied, with the polymeric resin being a general purpose polyester applied layer-by-layer on bi-directionally woven jute plies. Fabrication of flat laminates following the hand layup method combined with compression molding yields a jute polymer composite of higher initial stiffness and tensile strength, compared to commonly used plastics, coupled with consistency for engineering design applications. However, the weight-saving potential of a lightweight material such as the current jute-polyester composite can be further enhanced through improvement of its behavior under mechanical loading.
Technical Paper

Friction and Wear Studies on Jute Fiber and SS 304 Wire Mesh Reinforced Hybrid Polymer Composites for Automotive Applications

2023-04-11
2023-01-0727
Automotive industry is looking for high strength and durable lightweight material with resistance to wear and friction. To meet this requirement, a new hybrid polymer composite material has been developed using reinforcement as SS 304 wire mesh and jute fibre. Present paper explores the experimental findings of wear performance of hybrid polymer composite under dry condition. Four different laminates with configurations JJSJJSJJ, (JJSJJSJJ)450, GGSGGSGG and GJSJJSJG along with their virgin counterpart were developed by hand layup technique supported by compression moulding. These laminates were tested as per the ASTM standards to investigate its performance for friction and wear using pin on disc machine with steel as a counterpart. Testing parameters were sliding distance, applied load and sliding speed. Experimental results showed that, applied load have major influence on the friction and wear performance of developed hybrid composites.
Technical Paper

Natural Fiber Base Composite Material Solution for Vibration Damping of ICE and Next-Generation Vehicle

2023-04-11
2023-01-0728
Vibration control plays a critical role in conventional as well as next-generation vehicles. Construction of the vehicle, road conditions, and driving patterns are the major sources of the vibrations that cause discomfort to the passengers in the vehicle. Composite material is being looked at as an alternative material in the automotive sector due to its higher specific strength and good damping properties. In this research, the test specimen of steel plate used in automotive has been considered. The damping vibration test has been carried out on the test specimen by using the FFT analyzer to evaluate the natural frequency and damping. Thereafter, the hybrid composite material is developed with the natural fibers as reinforcement with steel plate to reduce the vibrations. The test specimens with different layers of damping materials have been prepared for this research. Jute, hemp, banana, and flax are used for the preparation of different composite materials.
Journal Article

Exploration of Vehicle Body Countermeasures Subjected to High Energy Loading

2023-04-11
2023-01-0003
Enhanced protection against high speed crashes requires more aggressive passive safety countermeasures as compared to what are provided in vehicle structures today. Apart from such collision-related scenarios, high energy explosions, accidentally caused or otherwise, require superior energy-absorbing capability of vehicle body subsystems. A case in point is a passenger vehicle subjected to an underbody blast emanating shock wave energy of military standards. In the current study, assessment of the behavior of a “hollow” countermeasure in the form of a depressed steel false floor panel attached with spot-welds along flanges to a typical predominantly flat floor panel of a car is initially carried out with an explicit LS-DYNA solver. This is followed up with the evaluation of PU (polyurethane) foam-filled and liquid-filled false floor countermeasures. In all cases, a charge is detonated under the false floor subjecting it to a high-energy shock pressure loading.
Technical Paper

Behavior of Adhesively Bonded Steel Double-Hat Section Components under Lateral Impact Loading

2018-04-03
2018-01-1447
Recent experimental studies on the behavior of adhesively-bonded steel double-hat section components under axial impact loading have produced encouraging results in terms of load-displacement response and energy absorption when compared to traditional spot-welded hat- sections. However, it appears that extremely limited study has been carried out on the behavior of such components under transverse impact loading keeping in mind applications such as automotive body structures subject to lateral/side impact. In the present work, lateral impact studies have been carried out in a drop-weight test set-up on adhesively-bonded steel double-hat section components and the performance of such components has been compared against their conventional spot-welded and hybrid counterparts. It is clarified that hybrid components in the present context refer to adhesively-bonded hat-sections with a few spot welds only aimed at preventing catastrophic flange separations.
Technical Paper

Prediction of the Behaviors of Adhesively Bonded Steel Hat Section Components under Axial Impact Loading

2017-03-28
2017-01-1461
Adhesively bonded steel hat section components have been experimentally studied in the past as a potential alternative to traditional hat section components with spot-welded flanges. One of the concerns with such components has been their performance under axial impact loading as adhesive is far more brittle as compared to a spot weld. However, recent drop-weight impact tests have shown that the energy absorption capabilities of adhesively bonded steel hat sections are competitive with respect to geometrically similar spot-welded specimens. Although flange separation may take place in the case of a specimen employing a rubber toughened epoxy adhesive, the failure would have taken place post progressive buckling and absorption of impact energy.
Technical Paper

Behavior of Adhesively Bonded Steel Double Hat-Section Components under Axial Quasi-Static and Impact Loading

2016-04-05
2016-01-0395
An attractive strategy for joining metallic as well as non-metallic substrates through adhesive bonding. This technique of joining also offers the functionality for joining dissimilar materials. However, doubts are often expressed on the ability of such joints to perform on par with other mechanical fastening methodologies such as welding, riveting, etc. In the current study, adhesively-bonded single lap shear (SLS), double lap shear (DLS) and T-peel joints are studied initially under quasi-static loading using substrates made of a grade of mild steel and an epoxy-based adhesive of a renowned make (Huntsman). Additionally, single lap shear joints comprised of a single spot weld are tested under quasi-static loading. The shear strengths of adhesively-bonded SLS joints and spot-welded SLS joints are found to be similar. An important consideration in the deployment of adhesively bonded joints in automotive body structures would be the performance of such joints under impact loading.
Journal Article

A Study into the Mechanical Behavior of Adhesively-Bonded Jute Fiber-Reinforced Composite

2015-04-14
2015-01-0729
Rapid progress in the interdisciplinary field of automotive engineering and the pressing need for an environmental friendly alternative to metal and synthetic fiber-reinforced composites for vehicle structure have triggered recent research in the field of natural fiber-based composites. Their potential advantages are attributed to their light weight, low cost and biodegradability. However, their usage in present day automotive systems is restricted due a lower magnitude range of mechanical properties and limited study in this area. In contrast to mechanical joints, the adhesively bonded joints aid in reducing stress concentration, joining of dissimilar materials, corrosion prevention, weight reduction and a smoother finish. Thus, in the present study, failure load, and mean shear stress of single lap shear and double lap shear joints as a function of joint overlap length, are evaluated using a two part epoxy adhesive made by Huntsman.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Technical Paper

A Comparative Study of Lumped Parameter Models for Assessing the Performance of Vehicle Suspension Systems

2015-04-14
2015-01-0620
Idealized mathematical models, also known as lumped parameter models (LPMs), are widely used in analyzing vehicles for ride comfort and driving attributes. However, the limitations of some of these LPMs are sometimes not apparent and a rigorous comparative study of common LPMs is necessary in ascertaining their suitability for various dynamic situations. In the present study, the mathematical descriptions of three common LPMs, viz. quarter, half and full car models, are systematically presented and solved for the appropriate response parameters such as body acceleration, body displacement, and, pitch and roll angles using representative passive suspension system properties. By carrying out a comparison of the three stated LPMs for hump-type road profiles, important quantitative insights, not previously reported in the literature, are generated into their behaviors so that their applications can be judicious and efficient.
Technical Paper

Performance of Lightweight Materials for Vehicle Interior Trim Subject to Monotonic Loading and Low Velocity Impact

2015-04-14
2015-01-0717
The usage of lightweight materials such as plastics and their derivatives continues to increase in automobiles driven by the urgency for weight reduction. For structural performance, body components such as A-pillar or B-pillar trim, instrument panel, etc. have to meet various requirements including resistance to penetration and energy absorption capability under impact indentation. A range of plain and reinforced thermoplastics and thermosetting plastics has been considered in the present study in the form of plates which are subject to low velocity perforation in a drop-weight impact testing set-up with a rigid cylindrical indenter fitted to a tup. The tested plates are made of polypropylene (PP), nanoclay-reinforced PP of various percentages of nanoclay content, wood-PP composites of different volume fractions of wood fiber, a jute-polyester composite, and a hybrid jute-polyester reinforced with steel.
Technical Paper

An Assessment of Load Cell- and Accelerometer-Based Responses in a Simulated Impact Test

2014-04-01
2014-01-0198
Load cells and accelerometers are commonly used sensors for capturing impact responses. The basic objective of the present study is to assess the accuracy of responses recorded by the said transducers when these are mounted on a moving impactor. In the present work, evaluation of the responses obtained from a drop-weight impact testing set-up for an axially loaded specimen has been carried out with the aid of an equivalent lumped parameter model (LPM) of the set-up. In this idealization, a test component such as a steel double hat section subjected to axial impact load is represented with a nonlinear spring. Both the load cell and the accelerometer are represented with linear springs, while the impactor comprising a hammer and a main body with the load cell in between are modelled as rigid masses. An experimentally obtained force-displacement response is assumed to be a true behavior of a specimen.
Journal Article

Numerical Prediction of Dynamic Progressive Buckling Behaviors of Single-Hat and Double-Hat Steel Components under Axial Loading

2013-04-08
2013-01-0458
Hat sections, single and double, made of steel are frequently encountered in automotive body structural components such as front rails, B-Pillar, and rockers of unitized-body cars. These components can play a significant role in terms of impact energy absorption during collisions thereby protecting occupants of vehicles from severe injury. Modern vehicle safety design relies heavily on computer-aided engineering particularly in the form of explicit finite element analysis tools such as LS-DYNA for virtual assessment of crash performance of a vehicle body structure. There is a great need for the analysis-based predictions to yield close correlation with test results which in turn requires well-proven modeling procedures for nonlinear material modeling with strain rate dependence, effective representation of spot welds, sufficiently refined finite element mesh, etc.
Technical Paper

Active Yaw Control of a Vehicle using a Fuzzy Logic Algorithm

2012-04-16
2012-01-0229
Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment.
Technical Paper

A Study on Ride Comfort Assessment of Multiple Occupants using Lumped Parameter Analysis

2012-04-16
2012-01-0053
Growing consumer expectations continue to fuel further advancements in vehicle ride comfort analysis including development of a comprehensive tool capable of aiding the understanding of ride comfort. To date, most of the work on biodynamic responses of human body in the context of ride comfort mainly concentrates on driver or a designated occupant and therefore leaves the scope for further work on ride comfort analysis covering a larger number of occupants with detailed modeling of their body segments. In the present study, governing equations of a 13-DOF (degrees-of-freedom) lumped parameter model (LPM) of a full car with seats (7-DOF without seats) and a 7-DOF occupant model, a linear version of an earlier non-linear occupant model, are presented. One or more occupant models can be coupled with the vehicle model resulting into a maximum of 48-DOF LPM for a car with five occupants.
Technical Paper

An Efficient Hybrid Approach for Design of Automotive Wheel Bearings

2011-04-12
2011-01-0091
Wheel bearings play a crucial role in the mobility of a vehicle by minimizing motive power loss and providing stability in cornering maneuvers. Detailed engineering analysis of a wheel bearing subsystem under dynamic conditions poses enormous challenges due to the nonlinearity of the problem caused by multiple factional contacts between rotating and stationary parts and difficulties in prediction of dynamic loads that wheels are subject to. Commonly used design methodologies are based on equivalent static analysis of ball or roller bearings in which the latter elements may even be represented with springs. In the present study, an advanced hybrid approach is suggested for realistic dynamic analysis of wheel bearings by combining lumped parameter and finite element modeling techniques.
Journal Article

Efficient Approximate Methods for Predicting Behaviors of Steel Hat Sections Under Axial Impact Loading

2010-04-12
2010-01-1015
Hat sections made of steel are frequently encountered in automotive body structural components such as front rails. These components can absorb significant amount of impact energy during collisions thereby protecting occupants of vehicles from severe injury. In the initial phase of vehicle design, it will be prudent to incorporate the sectional details of such a component based on an engineering target such as peak load, mean load, energy absorption, or total crush, or a combination of these parameters. Such a goal can be accomplished if efficient and reliable data-based models are available for predicting the performance of a section of given geometry as alternatives to time-consuming and detailed engineering analysis typically based on the explicit finite element method.
Technical Paper

Effects of Unloading and Strain Rate on Headform Impact Simulation

2004-03-08
2004-01-0738
The current paper presents improvements of a previous single-degree-of-freedom lumped parameter model with a nonlinear spring that could be used for preliminary design of headform impact safety countermeasures for normal impact with negligible headform rotation. The unloading taking place along the elastic path has been dispensed with and a parabolic unloading path may yield more realistic force-deformation and deceleration-time behaviors when compared with test results. The effects of the modified unloading behavior on HIC(d) are illustrated with examples. Additionally, a new velocity-dependent yield force criterion is adopted for the spring element to represent strain rate sensitive countermeasures. It is observed that inclusion of strain rate effect can either increase or decrease predicted HIC(d) when compared with using only quasi-static yield force.
X