Refine Your Search

Search Results

Technical Paper

Solid Nucleation Mode Engine Exhaust Particles Detection at High Temperatures with an Advanced Half Mini DMA

2019-09-09
2019-24-0052
Diesel and gasoline direct injection engines emit nucleation mode particles either under special conditions or as part of their size distribution, respectively. Currently, European legislation excludes nucleation mode particles as particle number vehicle emission measurements are limited down to 23 nm. The rationale behind such cut-off size is based on the avoidance of significant uncertainties created during sampling and measuring sub-23 nm solid particles. However, the sub-23 nm particles draw high attention since a large fraction of particles emitted by modern vehicles lies in this size range. In this study we investigate the possibility of accurate nucleation mode particles detection by using the Advanced Half-Mini Differential Mobility Analyzer (HM-DMA). The Advanced HM-DMA system is able to classify aerosol particles in the mobility size range 4 – 30 nm with high resolution and fast spectrum acquisition that can accommodate a hot sample flow up to 200°C.
Technical Paper

Growth and Restructuring Phenomena of Deposits in Particulate Filters

2018-04-03
2018-01-1265
As use of Particulate Filters (PFs) is growing not only for diesel but also for gasoline powered vehicles, the need for better understanding of deposit structure, growth dynamics and evolution arises. In the present paper we address a number of deposit growth and restructuring phenomena within particulate filters with the aim to improve particulate filter soot load estimation. To this end we investigate the dynamic factors that quantify the amount of particles that are stored within the wall and the restructuring of soot deposits. We demonstrate that particle accumulation inside the porous wall is dynamically controlled by the dimensionless Peclet number and provide a procedure for the estimation of parameters of interest such as the loaded filter wall permeability, the wall-stored soot mass at the onset of cake filtration.
Journal Article

Investigation of SCR Catalysts for Marine Diesel Applications

2017-03-28
2017-01-0947
Evolving marine diesel emission regulations drive significant reductions of nitrogen oxide (NOx) emissions. There is, therefore, considerable interest to develop and validate Selective Catalytic Reduction (SCR) converters for marine diesel NOx emission control. Substrates in marine applications need to be robust to survive the high sulfur content of marine fuels and must offer cost and pressure drop benefits. In principle, extruded honeycomb substrates of higher cell density offer benefits on system volume and provide increased catalyst area (in direct trade-off with increased pressure drop). However higher cell densities may become more easily plugged by deposition of soot and/or sulfate particulates, on the inlet face of the monolithic converter, as well as on the channel walls and catalyst coating, eventually leading to unacceptable flow restriction or suppression of catalytic function.
Journal Article

Catalytic Soot Oxidation: Effect of Ceria-Zirconia Catalyst Particle Size

2016-04-05
2016-01-0968
Catalysts that have been extensively investigated for direct soot oxidation in Catalyzed Diesel Particulate Filters (CDPFs) are very often based on mixed oxides of ceria with zirconia, materials known to assist soot oxidation by providing oxygen to the soot through an oxidation-reduction catalytic cycle. Besides the catalyst composition that significantly affects soot oxidation, other parameters such as morphological characteristics of the catalyst largely determined by the synthesis technique followed, as well as the reagents used in the synthesis may also contribute to the activity of the catalysts. In the present work, two ceria-zirconia catalyst samples with different zirconia content were subjected to different milling protocols with the aim to shift the catalyst particle size distribution to lower values. The produced catalysts were then evaluated with respect to their soot oxidation activity following established protocols from previous works.
Journal Article

Analysis of Asymmetric and Variable Cell Geometry Wall-Flow Particulate Filters

2014-04-01
2014-01-1510
Asymmetric and Variable Cell (AVC) geometry Diesel Particulate Filters (DPF) occupy an increasing portion of the DPFs currently offered by various DPF manufacturers, aiming at providing higher filtration area in the same filter volume to meet demanding emission control applications for passenger cars but also for heavy duty vehicles. In the present work we present an approach for designing and optimizing such DPFs by providing a quantitative description of the flow and deposition of soot in these structures. Soot deposit growth dynamics in AVC DPFs is studied computationally, primary and secondary flows over the inlet channels cross-sectional perimeters are analyzed and their interactions are elucidated. The result is a rational description of the observed growth of soot deposits, as the flow readjusts to transport the soot particles along the path of least resistance (which is not necessarily the shortest geometric path between the inlet and outlet channel, i.e. the wall thickness).
Journal Article

Experimental Study of Thermal Aging on Catalytic Diesel Particulate Filter Performance

2013-04-08
2013-01-0524
In this paper, a methodology is presented to study the influence of thermal aging on catalytic DPF performance using small scale coated filter samples and side-stream reactor technology. Different mixed oxide catalytic coating families are examined under realistic engine exhaust conditions and under fresh and thermally aged state. This methodology involves the determination of filter physical (flow resistance under clean and soot loaded conditions and filtration efficiency) and chemical properties (reactivity of catalytic coating towards direct soot oxidation). Thermal aging led to sintering of catalytic nanoparticles and to changes in the structure of the catalytic layer affecting negatively the filter wall permeability, the clean filtration efficiency and the pressure drop behavior during soot loading. It also affected negatively the catalytic soot oxidation activity of the catalyzed samples.
Technical Paper

The Micromechanics of Catalytic Soot Oxidation in Diesel Particulate Filters

2012-04-16
2012-01-1288
Despite the great effort devoted to the modeling of the operation of catalytic DPFs, even today very simple expressions are used for the soot oxidation rate. In the relevant to DPF operation case of a gas phase rich in oxygen, the structure of the soot-catalyst geometry and its evolution during oxidation determines the reaction rate. An extensive set of controlled experiments (isothermal or with linear temperature increase) using fuel borne catalysts and catalytic coatings has been performed in order to obtain corresponding soot oxidation rate-conversion curves. The shape of the resulting curves cannot be described by the typical theories for solid phase reactions posing the need for microstructural models for the micromechanics of soot catalyst interactions.
Technical Paper

Multi-Functional Reactor for Emission Reduction of Future Diesel Engine Exhaust

2009-04-20
2009-01-0287
Future diesel emission control systems have to effectively operate under non-conventional low-temperature combustion engine operating conditions. In this work the research and development efforts for the realization of a Multi-Functional catalyst Reactor (MFR) for the exhaust of the upcoming diesel engines is presented. This work is based on recent advances in catalytic nano-structured materials synthesis and coating techniques. Different catalytic functionalities have been carefully distributed in the filter substrate microstructure for maximizing the direct and indirect (NO2-assisted) soot oxidation rate, the HC and CO conversion efficiency as well as the filtration efficiency. Moreover, a novel filter design has been applied to enable internal heat recovery capability by the implementation of heat exchange between the outlet and the inlet to the filter flow paths.
Technical Paper

Advanced High Porosity Ceramic Honeycomb Wall Flow Filters

2008-04-14
2008-01-0623
A new platform of advanced ceramic composite filter materials for diesel particulate matter and exhaust gas emission control has been developed. These materials exhibit high porosity, narrow pore-size distribution, robust thermo-mechanical strength, and are extruded into high cell density honeycomb structures for wall-flow filter applications. These new high porosity filters provide a structured filtration surface area and a highly connected wall pore space which is fully accessible for multi-phase catalytic reactions. The cross-linked microstructure (CLM™) pore architecture provides a large surface area to host high washcoat/catalyst loadings, such as those required for advanced multi-functional catalysts (4-way converter applications).
Technical Paper

A Mobile Laboratory for On-board and Ambient Level Emissions Measurement

2008-04-14
2008-01-0756
Although engine emissions per vehicle have been reduced for twenty years with technical developments in the fields of engine, after-treatment technologies and fuels the urban air pollution problem still exists in many cities around the world. Forthcoming emission regulations will require further development of new complex technologies to reach low emissions. On-board driving assessment of such technologies offers significant advantages in the development phase of novel emission reduction. In this paper we present the design, development and commissioning of a mobile laboratory able to monitor on-board along the exhaust line gaseous and particulate pollutants as well as measure these pollutants in the ambient environment around the vehicle.
Technical Paper

Advanced Catalyst Coatings for Diesel Particulate Filters

2008-04-14
2008-01-0483
Novel catalytic coatings with a variety of methods based on conventional and novel synthesis routes are developed for Diesel Particulate Filters (DPFs). The developed catalytic composition exhibits significant direct soot oxidation as evaluated by reacting mixtures of diesel soot and catalyst powders in a thermogravimetric analysis apparatus (TGA). The catalyst composition was further deposited on oxide and non-oxide porous filter structures that were evaluated on an engine bench with respect to their filtration efficiency, pressure drop behavior and direct soot oxidation activity under realistic conditions. The effect of the catalyst amount on the filtration efficiency of non-oxide filters was also investigated. Evaluation of the indirect soot oxidation was conducted on non-oxide catalytic filters coated with precious metal.
Journal Article

Catalytic Nano-structured Materials for Next Generation Diesel Particulate Filters

2008-04-14
2008-01-0417
The increasing need for controlled diesel engine emissions and the strict regulations in the abatement of diesel exhaust products lead to an ever increasing use of Diesel Particulate Filters (DPFs) in OEM applications. The periodic regeneration of DPFs (oxidation of soot particles) demands temperatures that rarely appear during engine operation. It is therefore necessary to employ direct or indirect catalytic measures. In the present work, the development and synthesis via aerosol-based routes, of nanostructured base metal oxides for direct soot oxidation, along with their characterization and their evaluation in engine exhaust is described. The synthesized powders were characterized with respect to their phase composition and morphology. XRD, SEM and TEM analysis have shown the nanostructured character of the powders, while Raman spectroscopy was employed for the preliminary characterization of the materials surface chemistry.
Journal Article

Micro-Simulation of NO-NO2 Transport and Reaction in the Wall of a Catalyzed Diesel Particulate Filter

2008-04-14
2008-01-0442
Catalyzed Diesel Particulate Filters (CDPFs) continue to be an important emission control solution and are now also expanding to include additional functionalities such as gas species oxidation (such as CO, hydrocarbons and NO) and even storage phenomena (such as NOx and NH3 storage). Therefore an in depth understanding of the coupled transport - reaction phenomena occurring inside a CDPF wall can provide useful guidance for catalyst placement and improved accuracy over idealized effective medium 1-D and 0-D models for CDPF operation. In the present work a previously developed 3-D simulation framework for porous materials is applied to the case of NO-NO2 turnover in a granular silicon carbide CDPF. The detailed geometry of the CDPF wall is digitally reconstructed and micro-simulation methods are used to obtain detailed descriptions of the concentration and transport of the NO and NO2 species in the reacting environment of the soot cake and the catalyst coated pores of the CDPF wall.
Technical Paper

Wall-scale Reaction Models in Diesel Particulate Filters

2007-04-16
2007-01-1130
Following the successful market introduction of diesel particulate filters (DPFs), this class of emission control devices is expanding to include additional functionalities such as gas species oxidation (such as CO, HC and NO), storage phenomena (such as NOx and NH3 storage) to the extent that we should today refer not to DPFs but to Multifunctional Reactor Separators. This trend poses many challenges for the modeling of such systems since the complexity of the coupled reaction and transport phenomena makes any direct general numerical approach to require unacceptably high computing times. These multi-functionalities are urgently needed to be incorporated into system level emission control simulation tools in a robust and computationally efficient manner. In the present paper we discuss a new framework and its application for the computationally efficient implementation of such phenomena.
Technical Paper

Soot Oxidation Kinetics in Diesel Particulate Filters

2007-04-16
2007-01-1129
Direct catalytic soot oxidation is expected to become an important component of future diesel particulate emission control systems. The development of advanced Catalytic Diesel Particulate Filters (CDPFs relies on the interplay of chemistry and geometry in order to enhance soot-catalyst proximity. An extensive set of well-controlled experiments has been performed to provide direct catalytic soot oxidation rates in CDPFs employing small-scale side-stream sample exposure. The experiments are analyzed with a state-of-the-art diesel particulate filter simulator and a set of kinetic parameters are derived for direct catalytic soot oxidation by fuel-borne catalysts as well as by catalytic coatings. The influence of soot-catalyst proximity, on catalytic soot oxidation is found to be excellently described by the so-called Two-Layer model, developed previously by the authors.
Technical Paper

Study on Catalyzed-DPF for Improving the Continuous Regeneration Performance and Fuel Economy

2007-04-16
2007-01-0919
It is a big challenge how to satisfy both the purification of exhaust gas and the decrease of fuel penalty, that is, carbon-dioxide emission. Regarding the Diesel Particulate Filter (DPF) applied in the diesel after-treatment system, it must be effective for lowering the fuel penalty to prolong the interval and reduce the frequency of the DPF regeneration operation. This can be achieved by a DPF that has high Particulate Matter (PM) mass limit and high PM oxidation performance that is enough to regenerate the DPF continuously during the normal running operation. In this study, the examination of the pore structure of the wall of a DPF that could expand the continuous regeneration region in the engine operation map was carried out. Several porous materials with a wide range of pore structure were prepared and coated with a Mixed Oxide Catalyst (MOC). The continuous regeneration performance was evaluated under realistic conditions in the exhaust of a diesel engine.
Technical Paper

Multi-Instrumental Assessment of Diesel Particulate Filters

2007-04-16
2007-01-0313
As different Diesel Particulate Filter (DPF) designs and media are becoming widely adopted, research efforts in the characterization of their influence on particle emissions intensify. In the present work the influence of a Diesel Oxidation Catalyst (DOC) and five different Diesel Particulate Filters (DPFs) under steady state and transient engine operating conditions on the particulate and gaseous emissions of a common-rail diesel engine are studied. An array of particle measuring instrumentation is employed, in which all instruments simultaneously measure from the engine exhaust. Each instrument measures a different characteristic/metric of the diesel particles (mobility size distribution, aerodynamic size distribution, total number, total surface, active surface, etc.) and their combination assists in building a complete characterization of the particle emissions at various measurement locations: engine-out, DOC-out and DPF-out.
Technical Paper

A Multi-Reactor Assembly for Screening of Diesel Particulate Filters

2006-04-03
2006-01-0874
In this paper a fast DPF screening procedure is proposed using small-scale filter samples of different technologies in a well-controlled environment but under realistic engine exhaust conditions. The DPF samples are evaluated in a specially built Multi-Reactor Assembly (MRA) with respect to their flow resistance, filtration efficiency, soot loading behavior, soot oxidation behavior, as well as their ash induced ageing behavior.
Technical Paper

A Selective Particle Size Sampler Suitable for Biological Exposure Studies of Diesel Particulate

2006-04-03
2006-01-1075
The objective of this study is the design, construction and evaluation of a Selective Particle Size (SPS) sampler able to provide continuous delivery of diesel soot particles of specific size ranges. The design of the sampler combines principles of aerosol transport phenomena and separation technologies. Particles smaller than a given size are removed from the exhaust by diffusional deposition, while removal of particles above a given size is achieved by low pressure inertial impaction. The main application of the developed sampler is the exposure of biological samples such as cell and tissue cultures to selected sizes of diesel exhaust particles. By applying the SPS sampler to diesel exhaust it is demonstrated that it is possible to obtain two aerosol streams with widely separated particle size distributions (of nanometric dimensions), suitable for biological exposure studies.
Technical Paper

Catalytic Filter Systems with Direct and Indirect Soot Oxidation Activity

2005-04-11
2005-01-0670
Diesel Particulate Filters (DPFs) need to be periodically regenerated in order to achieve efficient and safe vehicle operation. Under typical diesel exhaust conditions, this invariably requires the raising of the exhaust gas temperature by active means, up to the point that particulate (soot) oxidation can be self-sustained in the filter. In the present work the development path of an advanced catalytic filter technology is presented. Full scale optimized Catalytic Diesel Particulate Filters (CDPFs) are tested in the exhaust of a light-duty modern diesel engine in line with a Diesel Oxidation Catalyst (DOC). The management of the DOC-CDPF emission control system is facilitated by a virtual soot sensor in order to ensure energy-efficient operation of the emission control system.
X