Refine Your Search

Topic

Author

Search Results

Technical Paper

Analysis and Model Validation of the Toyota Prius Prime

2019-04-02
2019-01-0369
The Toyota Prius Prime is a new generation of Toyota Prius plug-in hybrid electric vehicle, the electric drive range of which is 25 miles. This version is improved from the previous version by the addition of a one-way clutch between the engine and the planetary gear-set, which enables the generator to add electric propulsive force. The vehicle was analyzed, developed and validated based on test data from Argonne National Laboratory’s Advanced Powertrain Research Facility, where chassis dynamometer set temperature can be controlled in a thermal chamber. First, we analyzed and developed components such as engine, battery, motors, wheels and chassis, including thermal aspects based on test data. By developing models considering thermal aspects, it is possible to simulate the vehicle driving not only in normal temperatures but also in hot, cold, or warmed-up conditions.
Technical Paper

Optimizing Thermal Efficiency of a Multi-Cylinder Heavy Duty Engine with E85 Gasoline Compression Ignition

2019-04-02
2019-01-0557
Gasoline compression ignition (GCI) using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation (EGR)) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of EGR appears more practical. Previous studies with 93 AKI gasoline demonstrated that the port and direct injection strategy exhibited the best performance, but the premature combustion event prevented further increase in the premixed gasoline fraction and efficiency.
Technical Paper

Validating Heavy-Duty Vehicle Models Using a Platooning Scenario

2019-04-02
2019-01-1248
Connectivity and automation provide the potential to use information about the environment and future driving to minimize energy consumption. Aerodynamic drag can also be reduced by close-gap platooning using information from vehicle-to-vehicle communications. In order to achieve these goals, the designers of control strategies need to simulate a wide range of driving situations in which vehicles interact with other vehicles and the infrastructure in a closed-loop fashion. RoadRunner is a new model-based system engineering platform based on Autonomie software, which can collectively provide the necessary tools to predict energy consumption for various driving decisions and scenarios such as car-following, free-flow, or eco-approach driving, and thereby can help in developing control algorithms.
Technical Paper

Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine

2018-09-10
2018-01-1672
The CFR F1 engine is the standard testing apparatus used for rating the research octane number (RON) of gasoline fuels. Unlike the motor octane number (MON) method, where the intake port temperature after the carburetor is controlled by an electric heater, the mixture temperature can vary during the RON test due to the heat of vaporization (HoV) of the fuel. Ethanol is receiving increasing attention as a high octane and high HoV fuel component. This work presents an analysis of the combustion characteristics during the RON rating of ethanol fuel blends according to the standard ASTM D2699 method, highlighting the effects of ethanol concentration and base fuel composition. All fuels were blended to a constant RON of 98. Ethanol levels varied from 0 to 50 vol% and the base fuels were surrogate blends composed of primary reference fuels (PRF), toluene standardization fuels (TSF), and a four component gasoline surrogate.
Technical Paper

Fuel Consumption and Performance Benefits of Electrified Powertrains for Transit Buses

2018-04-03
2018-01-0321
This study presents a process to quantify the fuel saving potential of electrified powertrains for medium and heavy duty vehicles. For this study, equivalent vehicles with electrified powertrains are designed with the underlying principle of not compromising on cargo carrying capacity or performance. Several performance characteristics, that are relevant for all types of medium and heavy duty vehicles, were identified for benchmarking based on the feedback from the industry. Start-stop hybrids, parallel pre-transmission hybrids, plug-in hybrids, and battery electric vehicles are the technology choices in this study. This paper uses one vehicle as an example, explains the component sizing process followed for each powertrain, and examines each powertrain’s fuel saving potential. The process put forth in this paper can be used for evaluating vehicles that belong to all medium and heavy duty classes.
Technical Paper

Fuel Efficient Speed Optimization for Real-World Highway Cruising

2018-04-03
2018-01-0589
This paper introduces an eco-driving highway cruising algorithm based on optimal control theory that is applied to a conventionally-powered connected and automated vehicle. Thanks to connectivity to the cloud and/or to infrastructure, speed limit and slope along the future route can be known with accuracy. This can in turn be used to compute the control variable trajectory that will minimize energy consumption without significantly impacting travel time. Automated driving is necessary to the implementation of this concept, because the chosen control variables (e.g., torque and gear) impact vehicle speed. An optimal control problem is built up where quadratic models are used for the powertrain. The optimization is solved by applying Pontryagin’s minimum principle, which reduces the problem to the minimization of a cost function with parameters called co-states.
Technical Paper

A Modeling Framework for Connectivity and Automation Co-simulation

2018-04-03
2018-01-0607
This paper presents a unified modeling environment to simulate vehicle driving and powertrain operations within the context of the surrounding environment, including interactions between vehicles and between vehicles and the road. The goal of this framework is to facilitate the analysis of the energy impacts of vehicle connectivity and automation, as well as the development of eco-driving algorithms. Connectivity and automation indeed provide the potential to use information about the environment and future driving to minimize energy consumption. To achieve this goal, the designers of eco-driving control strategies need to simulate a wide range of driving situations, including the interactions with other vehicles and the infrastructure in a closed-loop fashion.
Journal Article

Insights into Engine Knock: Comparison of Knock Metrics across Ranges of Intake Temperature and Pressure in the CFR Engine

2018-04-03
2018-01-0210
Of late there has been a resurgence in studies investigating parameters that quantify combustion knock in both standardized platforms and modern spark-ignition engines. However, it is still unclear how metrics such as knock (octane) rating, knock onset, and knock intensity are related and how fuels behave according to these metrics across a range of conditions. As part of an ongoing study, the air supply system of a standard Cooperative Fuel Research (CFR) F1/F2 engine was modified to allow mild levels of intake air boosting while staying true to its intended purpose of being the standard device for American Society for Testing and Materials (ASTM)-specified knock rating or octane number tests. For instance, the carburation system and intake air heating manifold are not altered, but the engine was equipped with cylinder pressure transducers to enable both logging of the standard knockmeter readout and state-of-the-art indicated data.
Technical Paper

Model Validation of the Chevrolet Volt 2016

2018-04-03
2018-01-0420
Validation of a vehicle simulation model of the Chevrolet Volt 2016 was conducted. The Chevrolet Volt 2016 is equipped with the new “Voltec” extended-range propulsion system introduced into the market in 2016. The second generation Volt powertrain system operates in five modes, including two electric vehicle modes and three extended-range modes. Model development and validation were conducted using the test data performed on the chassis dynamometer set in a thermal chamber of Argonne National Laboratory’s Advanced Powertrain Research Facility. First, the components of the vehicle, such as the engine, motor, battery, wheels, and chassis, were modeled, including thermal aspects based on the test data. For example, engine efficiency changes dependent on the coolant temperature, or chassis heating or air-conditioning operations according to the ambient and cabin temperature, were applied.
Technical Paper

Development and Validation of a Three Pressure Analysis (TPA) GT-Power Model of the CFR F1/F2 Engine for Estimating Cylinder Conditions

2018-04-03
2018-01-0848
The CFR engine is the widely accepted platform to test standard Research Octane Number (RON) and Motored Octane Number (MON) for determining anti-knock characteristics of motor fuels. With increasing interest in engine downsizing, up-torquing, and alternative fuels for modern spark ignition (SI) engines, there is a need to better understand the conditions that fuels are subjected to in the CFR engine during octane rating. To take into account fuel properties, such as fuel heat of vaporization, laminar flame speed and auto-ignition chemistry; and understand their impacts on combustion knock, it is essential to estimate accurate cylinder conditions. In this study, the CFR F1/F2 engine was modeled using GT-Power with the Three Pressure Analysis (TPA) and the model was validated for different fuels and engine conditions.
Journal Article

Automated Model Initialization Using Test Data

2017-03-28
2017-01-1144
Building a vehicle model with sufficient accuracy for fuel economy analysis is a time-consuming process, even with the modern-day simulation tools. Obtaining the right kind of data for modeling a vehicle can itself be challenging, given that while OEMs advertise the power and torque capability of their engines, the efficiency data for the components or the control algorithms are not usually made available for independent verification. The U.S. Department of Energy (DOE) funds the testing of vehicles at Argonne National Laboratory, and the test data are publicly available. Argonne is also the premier DOE laboratory for the modeling and simulation of vehicles. By combining the resources and expertise with available data, a process has been created to automatically develop a model for any conventional vehicle that is tested at Argonne. This paper explains the process of analyzing the publicly available test data and computing the parameters of various components from the analysis.
Journal Article

Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

2017-03-28
2017-01-0671
Previous studies have shown that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flame speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed.
Technical Paper

Model-Based Fuel Economy Technology Assessment

2017-03-28
2017-01-0532
Many leading companies in the automotive industry have been putting tremendous amount of efforts into developing new designs and technologies to make their products more energy efficient. It is straightforward to evaluate the fuel economy benefit of an individual technology in specific systems and components. However, when multiple technologies are combined and integrated into a whole vehicle, estimating the impact without building and testing an actual vehicle becomes very complex, because the efficiency gains from individual components do not simply add up. In an early concept phase, a projection of fuel efficiency benefits from new technologies will be extremely useful; but in many cases, the outlook has to rely on engineer’s insight since it is impractical to run tests for all possible technology combinations.
Technical Paper

Control Analysis and Model Validation for BMW i3 Range Extender

2017-03-28
2017-01-1152
The control analysis and model validation of a 2014 BMW i3-Range Extender (REX) was conducted based on the test data in this study. The vehicle testing was performed on a chassis dynamometer set within a thermal chamber at the Advanced Powertrain Research Facility at Argonne National Laboratory. The BMW i3-REX is a series-type plug-in hybrid range extended vehicle which consists of a 0.65L in-line 2-cylinder range-extending engine with a 26.6kW generator, 125kW permanent magnet synchronous AC motor, and 18.8kWh lithium-ion battery. Both component and vehicle model including thermal aspects, were developed based on the test data. For example, the engine fuel consumption rate, battery resistance, or cabin HVAC energy consumption are affected by the temperature. Second, the vehicle-level control strategy was analyzed at normal temperature conditions (22°C ambient temperature). The analysis focuses on the engine on/off strategy, battery SOC balancing, and engine operating conditions.
Technical Paper

Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

2017-03-28
2017-01-0661
Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5.
Technical Paper

Feedforward Control of Fuel Distribution on Advanced Dual-Fuel Engines with Varying Intake Valve Closing Timings

2016-10-17
2016-01-2312
This study examines the dynamics and control of an engine operated with late intake valve closure (LIVC) timings in a dual-fuel combustion mode. The engine features a fuel delivery system in which diesel is direct-injected and natural gas is port-injected. Despite the benefits of LIVC and dual-fuel strategy, combining these two techniques resulted in efficiency losses due to the variability of the combustion process across cylinders. The difference in power production across cylinders ranges from 9% at an IVC of 570°ATDC* to 38% at an IVC of 620 °ATDC and indicates an increasingly uneven fuel distribution as the intake valve remains open longer in the compression stroke. This paper describes an approach for controlling the amount of fuel injected into each cylinders’ port of an inline six- cylinder heavy-duty dual-fuel engine to minimize the variations in fuel distribution across cylinder.
Technical Paper

Hydrocarbon Speciation in Blended Gasoline-Natural Gas Operation on a Spark-Ignition Engine

2016-10-17
2016-01-2169
The high octane rating and more plentiful domestic supply of natural gas make it an excellent alternative to gasoline. Recent studies have shown that using natural gas in dual fuel engines provides one possible strategy for leveraging the advantages of both natural gas and gasoline. In particular, such engines been able to improve overall engine efficiencies and load capacity when they leverage direct injection of the natural gas fuel. While the benefits of these engine concepts are still being explored, differences in fuel composition, combustion process and in-cylinder mixing could lead to dramatically different emissions which can substantially impact the effectiveness of the engine’s exhaust aftertreatment system. In order to explore this topic, this study examined the variations in speciated hydrocarbon emissions which occur for different fuel blends of E10 and compressed natural gas and for different fuel injection strategies on a spark-ignition engine.
Journal Article

Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine

2016-10-17
2016-01-2364
Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions.
Journal Article

Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine

2016-10-17
2016-01-2293
The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas.
Technical Paper

Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles)

2016-04-05
2016-01-0903
The energy density and power density comparison of conventional fuels and batteries is often mentioned as an advantage of conventional vehicles over electric vehicles. Such an analysis often shows that the batteries are at least an order of magnitude behind fuels like gasoline. However this incomplete analysis ignores the impact of powertrain efficiency and mass of the powertrain itself. When we compare the potential of battery electric vehicles (BEVs) as an alternative for conventional vehicles, it is important to include the energy in the fuel and their storage as well as the eventual conversion to mechanical energy. For instance, useful work expected out of a conventional vehicle as well as a BEV is the same (to drive 300 miles with a payload of about 300 lb). However, the test weight of a Conventional vehicle and BEV will differ on the basis of what is needed to convert their respective stored energy to mechanical energy.
X