Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Damping Force Optimal Control Strategy for Semi-Active Suspension System

2024-04-09
2024-01-2286
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model.
Technical Paper

Driving Style Identification Strategy Based on DS Evidence Theory

2023-04-11
2023-01-0587
Driving assistance system is regarded as an effective method to improve driving safety and comfort and is widely used in automobiles. However, due to the different driving styles of different drivers, their acceptance and comfort of driving assistance systems are also different, which greatly affects the driving experience. The key to solving the problem is to let the system understand the driving style and achieve humanization or personalization. This paper focuses on clustering and identification of different driving styles. In this paper, based on the driver's real vehicle experiment, a driving data acquisition platform was built, meanwhile driving conditions were set and drivers were recruited to collect driving information. In order to facilitate the identification of driving style, the correlation analysis of driving features is conducted and the principal component analysis method is used to reduce the dimension of driving features.
Journal Article

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

2021-04-06
2021-01-0100
With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention.
Technical Paper

A Path Planning and Model Predictive Control for Automatic Parking System

2020-04-14
2020-01-0121
With the increasing number of urban cars, parking has become the primary problem that people face in daily life. Therefore, many scholars have studied the automatic parking system. In the existing research, most of the path planning methods use the combined path of arc and straight line. In this method, the path curvature is not continuous, which indirectly leads to the low accuracy of path tracking. The parking path designed using the fifth-order polynomial is continuous, but its curvature is too large to meet the steering constraints in some cases. In this paper, a continuous-curvature parking path is proposed. The parking path tracker based on Model Predictive Control (MPC) algorithm is designed under the constraints of the control accuracy and vehicle steering. Firstly, in order to make the curvature of the parking path continuous, this paper superimposes the fifth-order polynomial with the sigmoid function, and the curve obtained has the continuous and relatively small curvature.
Technical Paper

Research on Compensation Redundancy Control for Basic Force Boosting Failure of Electro-Booster Brake System

2020-04-14
2020-01-0216
As a new brake-by-wire solution, the electro-booster (Ebooster) brake system can work with the electronic stability program (ESP) equipped in the real vehicle to realize various excellent functions such as basic force boosting (BFB), active braking and energy recovery, which is promoting the development of smart vehicles. Among them, the BFB is the function of Ebooster's servo force to assist the driver's brake pedal force establishing high-intensity braking pressure. After the BFB function failure of the Ebooster, it was not possible to provide sufficient brake pressure for the driver's normal braking, and eventually led to traffic accidents. In this paper, a compensation redundancy control strategy based on ESP is proposed for the BFB failure of the self-designed Ebooster.
Technical Paper

Pressure Tracking Control of Electro-Mechanical Brake Booster System

2020-04-14
2020-01-0211
The Electro-Mechanical Brake Booster system (EMBB) is a kind of novel braking booster system, which integrates active braking, regenerative braking, and other functions. It usually composes of a servo motor and the transmission mechanism. EMBB can greatly meet the development needs of vehicle intelligentization and electrification. During active braking, EMBB is required to respond quickly to the braking request and track the target pressure accurately. However, due to the highly nonlinearity of the hydraulic system and EMBB, traditional control algorithms especially for PID algorithm do not work well for pressure control. And a large amount of calibration work is required when applying PID algorithms to pressure control in engineering.
Technical Paper

Regenerative Braking Pedal Decoupling Control for Hydraulic Brake System Equipped with an Electro-Mechanical Brake Booster

2019-04-02
2019-01-1108
Electrification and intelligence are the important development directions of vehicle techniques. The Electro-Mechanical Brake Booster (Ebooster) as a brake booster which is powered by a motor, can be used to replace the traditional vacuum booster. Ebooster not only improves the intelligence level of vehicle braking and significantly improves the braking performance, but also adapts to the application in new energy vehicles and facilitates coordinated regenerative braking. However, Ebooster cannot complete pedal decoupling independently. It needs to cooperate with other components to realize pedal decoupling. In this paper, a pedal decoupling control algorithm for regenerative brake, which is based on the coordination control of Ebooster and ESP, is proposed. First, regenerative braking strategy is designed to distribute the hydraulic brake force and regenerative braking force.
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
Technical Paper

Automatic Drive Train Management System for 4WD Vehicle Based on Road Situation Identification

2018-04-03
2018-01-0987
The slip ratio of vehicle driving wheels is easily beyond a reasonable range in the complex and changeable driving conditions. In order to achieve the adaptive acceleration slip regulation of four-wheel driving (4WD) vehicle, a fuzzy control strategy of Automatic Drive Train Management (ADM) system based on road situation identification was proposed in this paper. Firstly, the influence on the control strategy of ADM system was analyzed from two aspects, which included the different road adhesion coefficients and the vehicle’s ramp driving state. In the meantime several quantitative expressions of relevant control parameters were derived. Secondly, the fuzzy logic control algorithm was adopted to design a road situation identification subsystem and a ramp driving state identification subsystem respectively. The former was based on the μ-S curve model, and the latter was based on the vehicle driving equilibrium equation.
Technical Paper

Model-Based Pneumatic Braking Force Control for the Emergency Braking System of Tractor-Semitrailer

2018-04-03
2018-01-0824
As bottom layer actuator for the AEB system, the active brake system and the brake force control of tractor-semitrailer have been the hot topics recently. In this paper, a set of active pneumatic brake system was designed based on the traditional brake system of tractor-semitrailer, which can realize the active brake of the vehicle under necessary conditions. Then, a precise mathematical model of the active pneumatic brake system was built by referring the flow characteristics of the solenoid valve, and some tests were implemented to verify the accuracy and validity of the active brake system model. Based on the model, an active pneumatic brake pressure control strategy combining the feedforward and feedback controlling modes was designed. By generating the PWM control signal, it can precisely control the desired wheel cylinder brake pressure of the active brake system. Finally, the brake pressure control strategy was validated both by simulation tests and bench tests.
Technical Paper

Modelling and Validation for an Electro-Hydraulic Braking System Equipped with the Electro-Mechanical Booster

2018-04-03
2018-01-0828
The intelligent and electric vehicles are the future of vehicle technique. The development of intelligent and electric vehicles also promotes new requirements to many traditional chassis subsystems, including traditional braking system equipped with vacuum boosters. The Electro-Mechanical Booster is an applicable substitute of traditional vacuum booster for future intelligent and electric vehicles. It is independent of engine vacuum source, and can be combined with electric regenerative braking. A complete system model is necessary for system analysis and algorithm developing. For this purpose, the modeling of electro-hydraulic braking system is necessary. In this paper, a detailed electro-hydraulic braking system model is studied. The system consists of an electro-mechanical booster and hydraulic braking system. The electro-mechanical booster which mainly contains a permanent magnet synchronous motor (PMSM) and a set of transmission mechanism is the critical component.
Technical Paper

Pressure Control for Hydraulic Brake System Equipped with an Electro-Mechanical Brake Booster

2018-04-03
2018-01-0829
The Electro-Mechanical Brake Booster (Ebooster) is a critical component of the novel brake system for electric intelligent vehicles. It is independent of engine vacuum source, provides powerful active brake performance and can be combined with electric regenerative braking. In this paper, a brake control algorithm for hydraulic brake system equipped with an Ebooster is proposed. First, the configuration of the Ebooster is introduced and the system model including the permanent magnet synchronous motor (PMSM) and hydraulic brake system is established by Matlab/Simulink. Second, a Four-closed-loop algorithm is introduced for accurate active brake pressure control. Finally, according to the requirement of different brake force, series of simulations are carried out under active braking condition. The results show that the control algorithm introduced in this paper can ensure the brake hydraulic pressure tracking a target value precisely and show a good control performance.
Technical Paper

Steering Control Based on the Yaw Rate and Projected Steering Wheel Angle in Evasion Maneuvers

2018-04-03
2018-01-0030
When automobiles are at the threat of collisions, steering usually needs shorter longitudinal distance than braking for collision avoidance, especially under the condition of high speed or low adhesion. Thus, more collision accidents can be avoided in the same situation. The steering assistance is in need since the operation is hard for drivers. And considering the dynamic characteristics of vehicles in those maneuvers, the real-time and the accuracy of the assisted algorithms is essential. In view of the above problems, this paper first takes lateral acceleration of the vehicle as the constraint, aiming at the collision avoidance situation of the straight lane and the stable driving inside the curve, and trajectory of the collision avoidance is derived by a quintic polynomial.
Technical Paper

Identification of Driver Individualities Using Random Forest Model

2017-09-23
2017-01-1981
Driver individualities is crucial for the development of the Advanced Driver Assistant System (ADAS). Due to the mechanism that specific driving operation action of individual driver under typical conditions is convergent and differentiated, a novel driver individualities recognition method is constructed in this paper using random forest model. A driver behavior data acquisition system was built using dSPACE real-time simulation platform. Based on that, the driving data of the tested drivers were collected in real time. Then, we extracted main driving data by principal component analysis method. The fuzzy clustering analysis was carried out on the main driving data, and the fuzzy matrix was constructed according to the intrinsic attribute of the driving data. The drivers’ driving data were divided into multiple clusters.
Technical Paper

Integrated Threat Assessment for Trajectory Planning of Intelligent Vehicles

2016-04-05
2016-01-0153
This paper reports an effort to improve plan of vehicle trajectory using an approach with rapidly-exploring random trees (RRT), which has been widely adopted in the prior art for complex and dynamic traffic environment. Design and implement of an integrated threat assessment is presented that evaluates threats of the trajectory. A node and trajectory evaluation index was introduced into the proposed RRT algorithm to connect an appropriate node and select the best trajectory. The contribution of this paper is on the threat assessment that takes into account not only obstacle avoidance but also stability. The simulation is conducted and the results show that the proposed method works as expected and is valid and effective.
Journal Article

Allocation-Based Control with Actuator Dynamics for Four-Wheel Independently Actuated Electric Vehicles

2015-04-14
2015-01-0653
This paper proposes a novel allocation-based control method for four-wheel independently actuated electric vehicles. In the proposed method, both actuator dynamics and input/output constraints are fully taken into consideration in the control design. First, the actuators are modeled as first-order dynamic systems with delay. Then, the control allocation is formulated as an optimization problem, with the primary objective of minimizing errors between the actual and desired control outputs. Other objectives include minimizing the power consumption and the slew rate of the actuator outputs. As a result, this leads to frequency-dependent allocation that reflects the bandwidth of each actuator. To solve the optimization problem, an efficient numerical algorithm is employed. Finally the proposed control allocation method is implemented to control a four-wheel independently actuated electric vehicle.
Journal Article

Integrated Longitudinal Vehicle Dynamics Control with Tire/Road Friction Estimation

2015-04-14
2015-01-0645
The longitudinal dynamics control is an essential task of vehicle dynamics control. In present, it is usually applied by adjusting the slip ratio of driving wheels to achieve satisfactory performances both in stability and accelerating ability. In order to improve its performances, the coordination of different subsystems such as engine, transmission and braking system has to be considered. In addition, the proposed algorithms usually adopt the threshold methods based on less road condition information for simpleness and quick response, which cannot achieve optimal performance on various road conditions. In this paper, an integrated longitudinal vehicle dynamics control algorithm with tire/road friction estimation was proposed. First, a road identification algorithm was designed to estimate tire forces of driving wheels and the friction coefficient by the method of Kalman Filter and Recursive Least Squares (RLS).
Technical Paper

Recognition and Classification of Vehicle Target Using the Vehicle-Mounted Velodyne LIDAR

2014-04-01
2014-01-0322
This paper describes a novel recognition and classification method of vehicle targets in urban road based on a vehicle-mounted Velodyne HDL64E light detection and ranging (LIDAR) system. The autonomous vehicle will choose different driving strategy according to the surrounding traffic environments to guarantee that the driving is safe, stable and efficient. It is helpful for controller to provide the efficient stagey to know the exact type of vehicle around. So this method concentrates on reorganization and classification the type of vehicle targets so that the controller can provide a safe and efficient driving strategy for autonomous ground vehicles. The approach is targeted at high-speed ground vehicle, so real-time performance of the method plays a critical role. In order to improve the real-time performance, some methods of data preprocessing should be taken to simplify the large-size long-range 3D point clouds.
X