Refine Your Search

Search Results

Journal Article

Fuel Film Behavior Analysis Using Simulated Intake Port

Transient behavior of the engine is one of the most crucial factors for motorcycle features. Characterization of the fuel film with port fuel injection (PFI) is necessary to enhance this feature with keeping others, such as high output, low emissions and good fuel consumption. In order to resolve the complicated phenomena in real engine condition into simple physical issues, a simulated intake port was used in our research with Laser Induced Fluorescence (LIF) technique to allow accurate measurement of the fuel film thickness, complemented by visualization of the film development and spray behavior using high-speed video imaging. Useful results have been conducted from the parametric studies with various sets of conditions, such as injection quantity, air velocity and port backpressure.
Technical Paper

Internal Flow and Cavitation in a Multi-Hole Injector for Gasoline Direct-Injection Engines

A transparent enlarged model of a six-hole injector used in the development of emerging gasoline direct-injection engines was manufactured with full optical access. The working fluid was water circulating through the injector nozzle under steady-state flow conditions at different flow rates, pressures and needle positions. Simultaneous matching of the Reynolds and cavitation numbers has allowed direct comparison between the cavitation regimes present in real-size and enlarged nozzles. The experimental results from the model injector, as part of a research programme into second-generation direct-injection spark-ignition engines, are presented and discussed. The main objective of this investigation was to characterise the cavitation process in the sac volume and nozzle holes under different operating conditions. This has been achieved by visualizing the nozzle cavitation structures in two planes simultaneously using two synchronised high-speed cameras.
Technical Paper

Evaluation of the Predictive Capability of Diesel Nozzle Cavitation Models

The predictive capability of Lagrangian and Eulerian multi-dimensional computational fluid dynamics models accounting for the onset and development of cavitation inside Diesel nozzle holes is assessed against experimental data. These include cavitation images available from a real-size six-hole mini-sac nozzle incorporating a transparent window as well as high-speed/CCD images and LDV measurements of the liquid velocity inside an identical large-scale fully transparent nozzle replica. Results are available for different cavitation numbers, which correspond to different cavitation regimes forming inside the injection hole. Discharge coefficient measurements for various real-size nozzles operating under realistic injection pressures are also compared and match well with models' predictions.
Technical Paper

Prediction of Liquid and Vapor Penetration of High Pressure Diesel Sprays

A dense-particle Eulerian-Lagrangian stochastic methodology, able to resolve the dense spray formed at the nozzle exit has been applied to the simulation of evaporating diesel sprays. Local grid refinement at the area where the spray evolves allows use of cells having sizes from 0.6 down to 0.075mm. Mass, momentum and energy source terms between the two phases are spatially distributed to cells found within a distance from the droplet centre; this has allowed for grid-independent interaction between the Eulerian and the Lagrangian phases to be reached. Additionally, various models simulating the physical processes taking place during the development of sprays are considered. The cavitating nozzle flow is used to estimate the injection velocity of the liquid while its effect on the spray formation is considered through an atomisation model predicting the initial droplet size.
Technical Paper

Effect of Multi-Injection Strategy on Cavitation Development in Diesel Injector Nozzle Holes

The effect of multiple-injection strategy on nozzle hole cavitation has been investigated both experimentally and numerically. A common-rail Diesel injection system, used by Toyota in passenger car engines, has been employed together with a double-shutter CCD camera in order to visualise cavitation inside a submerged and optically accessible (in one out of the six holes) real-size VCO nozzle. Initially the cavitation development was investigated in single injection events followed by flow images obtained during multiple injections consisting of a pilot and a main injection pulse. In order to identify the effect of pilot injection on cavitation development during the main injection, the dwell time between the injection events was varied between 1.5-5ms for different pilot injection quantities. The extensive test matrix included injection pressures of 400 and 800bar and back pressures ranging from 2.4 up to 41bar.
Technical Paper

Nozzle Hole Film Formation and its Link to Spray Characteristics in Swirl-Pressure Atomizers for Direct Injection Gasoline Engines

The numerical methodology used to predict the flow inside pressure-swirl atomizers used with gasoline direct injection engines and the subsequent spray development is presented. Validation of the two-phase CFD models used takes place against film thickness measurements obtained from high resolution CCD-based images taken inside the discharge hole of a pressure swirl atomizer modified to incorporate a transparent hole extension. The transient evolution of the film thickness and its mean axial and swirl velocity components as it emerges from the nozzle hole is then used as input to a spray CFD model predicting the development of both non-evaporating and evaporating sprays under a variety of back pressure and temperature conditions. Model predictions are compared with phase Doppler anemometry measurements of the temporal and spatial variation of the droplet size and velocity as well as CCD spray images.
Technical Paper

Flow, Combustion and Emissions in a Five-Valve Research Gasoline Engine

The in-cylinder flow, mixture distribution, combustion and exhaust emissions in a research, five-valve purpose-built gasoline engine are discussed on the basis of measurements obtained using laser Doppler velocimetry (LDV), fast spark-plug hydrocarbon sampling, flame imaging and NOx/HC emissions using fast chemiluminescent and flame ionisation detectors/analysers. These measurements have been complemented by steady flow testing of various cylinder head configurations, involving single- and three-valve operation, in terms of flow capacity and in-cylinder tumble strength.
Technical Paper

Pressure-Swirl Atomizers for DISI Engines: Further Modeling and Experiments

A combined two-phase CFD nozzle model and 1-D fuel injection system model is used to predict the flow development inside the discharge hole of a pressure-swirl atomizer connected to a common-rail based fuel injection system for DISI engines. The fuel injection model accounts for the transient pressure pulses developing inside the common-rail and the injector upstream of the nozzle tip and predicts the fuel injection rate through the nozzle. This is then used as input to a 3-D single-phase CFD model estimating the transient development of the swirl velocity inside the pressure-swirl atomizer, as a function of the geometric characteristics of nozzle.
Technical Paper

Cavitation in Real-Size Multi-Hole Diesel Injector Nozzles

A production six-hole conical sac-type nozzle incorporating a quartz window in one of the injection holes has been used in order to visualize the flow under cavitating flow conditions. Simultaneous variation of both the injection and the back chamber pressures allowed images to be obtained at various cavitation and Reynolds numbers for two different fixed needle lifts corresponding to the first- and the second-stage lift of two-stage injectors. The flow visualization system was based on a fast and high resolution CCD camera equipped with high magnification lenses which allowed details of the various flow regimes formed inside the injection hole to be identified. From the obtained images both hole cavitation initiated at the top inlet corner of the hole as well as string cavitation formed inside the sac volume and entering into the hole from the bottom corner, were identified to occur at different cavitation and Reynolds numbers.
Technical Paper

Modeling of Pressure-Swirl Atomizers for GDI Engines

A new simulation approach to the modeling of the whole fuel injection process within a common-rail fuel injection system for direct-injection gasoline engines, including the pressure-swirl atomizer and the conical hollow-cone spray formed at the nozzle exit, is presented. The flow development in the common-rail fuel injection system is simulated using an 1-D model which accounts for the wave dynamics within the system and predicts the actual injection pressure and injection rate throughout the nozzle. The details of the flow inside its various flow passages and the discharge hole of the pressure-swirl atomizer are investigated using a two-phase CFD model which calculates the location of the liquid-gas interface using the VOF method and estimates the transient formation of the liquid film developing on the walls of the discharge hole due to the centrifugal forces acting on the swirling fluid.
Technical Paper

Modeling of Advanced High-Pressure Fuel Injection Systems for Passenger Car Diesel Engines

A one-dimensional, transient and compressible flow model was used in order to simulate the flow and pressure distribution in advanced high-pressure fuel injection systems; these include electronic distributor-type pumps with either axial or radial plungers and a common-rail system. Experimental data for the line pressure, needle lift, injection rate and total fuel injection quantity obtained over a wide range of operating conditions (from idle to high speed/full load) were used to validate the model. The FIE system used for validation comprised an electronic high-pressure pump connected to two-stage injectors of different type including 6-hole vertical and 5-hole inclined conical-sac and VCO nozzles.
Technical Paper

Analysis of the Flow in the Nozzle of a Vertical Multi-Hole Diesel Engine Injector

An enlarged transparent model of a six-hole vertical diesel injector has been manufactured in order to allow flow measurements inside the sac volume and the injection holes to be obtained using a combination of laser Doppler velocimetry (LDV) and the refractive index matching technique under steady state conditions. The measurement points were concentrated in the sac volume close to the entrance of the injection holes as well as inside them on a vertical plane passing through the axis of two injection holes for two different needle lifts. The velocity flow field was characterized in terms of the mean velocity and the turbulent intensity. The results revealed that, under certain conditions, cavitation may occur in the recirculation zone formed at the entrance to the hole since the pressure in this region can reach the value of the vapor pressure of the flowing liquid; this was found to strongly depend on the needle lift and eccentricity.
Technical Paper

Droplet Velocity/Size and Mixture Distribution in a Single-Cylinder Four-Valve Spark-Ignition Engine

Laser Doppler velocimetry, phase Doppler anemometry and Mie scattering were applied to a single-cylinder, four-valve, spark-ignition gasoline research engine equipped with a fully transparent liner and piston, to obtain information about the tumble flow and the droplet size and velocity distributions during induction and compression, for lean air/fuel mixture ratios of 17.5 and 24 and with closed-valve and open-valve fuel injection. The mixture distribution obtained with the two injection strategies was correlated with flame images, pressure analysis and exhaust emissions which confirmed the advantages of combining open-valve injection with tumble to allow stable and efficient engine operation at an air/fuel ratio of 24 through charge stratification and faster flame growth.
Technical Paper

Mixture Formation and Combustion in the Dl Diesel Engine

The diesel engine is the most efficient user of fossil fuels for vehicle propulsion and seems to best fulfill the requirements of the future. It is for this reason that Volkswagen has initiated a very broad research programme for diesels. The purpose of this paper is to build a bridge between fundamental research and technical developments which could allow evaluation of the prospects of direct- injection diesels as powerplants of choice for passenger cars in the turn of the century. The current knowledge on mixture formation, combustion and pollutant formation in diesel engines is presented and discussed with special emphasis given to the concept of the direct-injection diesel engine.
Technical Paper

Application of a FIE Computer Model to an In-Line Pump-Based Injection System for Diesel Engines

A computer model simulating the flow in fuel injection systems has been used in order to investigate the fuel injection processes in an in-line pump-based fuel injection system for direct-injection diesel engines. The model is one-dimensional and it is based on the mass and momentum conservation equations for the simulation of the fuel flow and on the equilibrium of forces for the simulation of the mechanical movements of the valves present in the system. The fuel injection system tested comprised an in-line pump whose characteristics were examined by using as input the measured line pressure signal and by modeling the pump operation itself as well as the fuel flow through single- and two-stage injectors. For the validation of the model, extensive comparison with experimental data has been performed for a wide range of pump operating conditions.
Technical Paper

Evaluation of Pump Design Parameters in Diesel Fuel Injection Systems

A computer model solving the 1-D flow in a typical fuel injection system for direct-injection diesel engines is presented. A Bosch distributor - type VE pump connected to four Stanadyne pencil - type nozzles has been used to validate the computer model over a wide range of operating conditions. Validation of the developed computer code has been performed for eight representative test cases. The predicted values which were compared with the experimental ones include the pumping chamber pressure, the line pressure, the needle lift and the injection rate. Results using as input the measured pumping chamber pressure are also presented in order to identify the error in the injection rate signal attributed to the difference between the simulated and the experimental pumping chamber pressure. In addition, the total fuel injection quantity for pump speeds between 500 and 2000 rpm and lever positions between 20% to 100% was calculated and compared with measurements.
Technical Paper

Flow and Heat Transfer Characteristics of Impinging Diesel Sprays Under Cross-Flow Conditions

The spray/wall interaction in small direct-injection diesel engines employing swirl was simulated in a bench-type experiment by a steady cross-flow of air acting on a transient diesel spray impinging normally onto a heated and unheated flat plate under atmospheric conditions. The droplet size and velocity characteristics in the radial wall-jet formed on the plate after spray impingement were investigated by phase-Doppler anemometry and the spray/wall heat transfer during impingement was measured using fast-response thermocouples. The results showed that the mechanism of secondary atomisation of the impinging droplets was altered as droplets from the approaching spray were entrained by the cross-flow, while the spray/wall heat transfer was reduced due to the lower droplet flux reaching the wall. Based on the approaching droplet velocity and size characteristics and wall temperature, an empirical correlation has been derived between the flow and heat transfer parameters.
Technical Paper

Flow and Heat Transfer Characteristics of Impinging Transient Diesel Sprays

The spatial and temporal characteristics of transient diesel sprays impinging on unheated and heated walls were investigated by phase-Doppler anemometry (PDA) and the heat-transfer distribution in the vicinity of the impingement region was determined by fast response thermocouples. The results have provided quantitative evidence about the effect that the presence of the flat wall exerts on the spray characteristics. For example, independent of the thickness of the liquid film, the wall rearranges the droplet size distribution of the free spray with droplet collision and coalescence playing an important role in both the droplet redistribution and in the development of the wall-jet. Droplet sizes were reduced and mean tangential velocities increased with wall temperature at the upstream side and at the front of the wall-jet, respectively.
Technical Paper

Computer Simulation of Fuel Injection Systems for DI Diesel Engines

The continuity and momentum equations for a pump-pipe-nozzle fuel injection system have been solved by a computer simulation program employing both the Runge-Kutta method and the more widely used method of characteristics. This allows the prediction of fluid phenomena and the dynamics of the mechanical components based on the geometry of the FIE system. The simulation includes the effects of possible cavitation, system leakage as well as variations in fuel density and bulk modulus. The computer model has been made as flexible as possible by using a modular format and inputting the system parameters from external files or dialog boxes. Experimentation was done on a Bosch VE type distributor pump supplying a multi-hole type nozzle which allowed preliminary evaluation of the model by comparing the predicted and measured injection rates and line pressures over a range of pump speeds and loads.
Technical Paper

Coolant Flow in the Cylinder Head/Block of the Ford 2.5L DI Diesel Engine

Local measurements of the mean and rms velocities have been obtained by laser Doppler velocimetry in the coolant passages of a transparent model of a Ford 2.5L diesel cylinder head and block at a steady flowrate of 6.83 × 10-4 M3/s. The simulation of the coolant fluid by a mixture of hydrocarbon fluids at a predetermined constant temperature allowed accurate matching of the refractive index to that of the acrylic model, thus providing optical access for LDV measurements of the internal flow in sensitive areas where cooling is essential to prevent metal-fatigue failure. The results were obtained in sufficient detail to allow further validation of CFD coolant flow models.