Refine Your Search

Search Results

Standard

Chemical Compositions of SAE Carbon Steels

2014-06-30
CURRENT
J403_201406
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Selection and Use of Steels

2012-03-12
CURRENT
J401_201203
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
Standard

Hardenability Bands for Carbon and Alloy H Steels

2010-05-03
CURRENT
J1268_201005
All carbon and alloy H-band steels are shown, along with their corresponding minimum and maximum hardenability limits, for which sufficient hardenability data have been established and for grades which use the standard end-quench test. As hardenability data are accumulated for other grades, this SAE Standard will be revised to include such grades.
Standard

Restricted Hardenability Bands for Selected Alloy Steels

2010-02-15
CURRENT
J1868_201002
Restricted hardenability steels have been in use for some time but the specific restrictions for a particular grade depend upon customer needs and vary from mill to mill. Such steels are desirable to provide more controlled heat treatment response and dimensional control for critical parts. Because of increasing interest in steels with restricted hardenability, the SAE Iron and Steel Technical Committee directed Division 8 to prepare a set of standard steels with restricted hardenability. In 1993, the American Society for Testing and Materials (ASTM) adopted the twelve SAE restricted hardenability steels and added ten more. SAE decided to include in SAE J1868 the additional 10 steels. In general, steels with restricted hardenability (RH steels) will exhibit a hardness range not greater than 5 HRC at the initial position on the end-quench hardenability bar and not greater than 65% of the hardness range for standard H-band steels (see SAE J1268) in the "inflection" region.
Standard

Chemical Compositions of SAE Carbon Steels

2009-12-07
HISTORICAL
J403_200912
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

High-Strength Carbon and Alloy Die Drawn Steels

2009-11-24
CURRENT
J935_200911
This SAE Recommended Practice is intended to provide basic information on properties and characteristics of high-strength carbon and alloy steels which have been subjected to special die drawing. This includes both cold drawing with heavier-than-normal drafts and die drawing at elevated temperatures.
Standard

Chemical Compositions of SAE Alloy Steels

2009-01-27
CURRENT
J404_200901
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Division 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
Standard

Former SAE Standard and Former SAE Ex-Steels

2008-12-02
CURRENT
J1249_200812
This SAE Information Report provides a list of those SAE steels which, because of decreased usage, have been deleted from the standard SAE Handbook listings. Included are alloy steels from SAE J778 deleted since 1936, carbon steels from SAE J118 deleted since 1952, and all EX-steels deleted from SAE J1081. Information concerning SAE steels prior to these dates may be obtained from the SAE office on request. With the issuance of this report, SAE J778, Formerly Standard SAE Alloy Steels, and SAE J118, Formerly Standard SAE Carbon Steels, will be retired since they are now combined in SAE J1249. In the future, new assignments to SAE J1081, Chemical Compositions of SAE Experimental Steels, will be given “PS” (Potential Standard) numbers rather than “EX” numbers. The steels listed in Tables 1 and 2 are no longer considered as standard steels. Producers should be contacted concerning availability.
Standard

New Steel Designation System for Wrought or Rolled Steel

2005-07-20
CURRENT
J402_200507
This SAE Standard describes a new alphanumeric designation system for wrought steel used to designate wrought ferrous materials, identify chemical composition, and any other requirements listed in SAE Standards and Recommended Practices. The previous SAE steel designation coding system consisted of four or five numbers used to designate standard carbon and alloy steels specified to chemical composition ranges. Using SAE 1035 as an example, the 35 represents the nominal weight % carbon content for the grade. Using SAE 52100 as an example, the 100 represents the nominal weight % carbon content. The first two numbers of this four or five number series are used to designate the steel grade carbon or alloy system with variations in elements other than carbon. These are described in Table 1. In addition to the standard four or five number steel designation above, a letter was sometimes added to the grade code to denote a non-standard specific element being added to the standard grade.
Standard

High-Strength, Hot-Rolled Steel Bars

2003-09-24
CURRENT
J1442_200309
This SAE Recommended Practice covers two levels of high strength structural low-alloy steel bars having minimum Yield Points of 345 MPa (50 ksi) and 450 MPa (65 ksi). The two strength levels are 345 and 450 MPa or 50 and 65 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. It should be noted that although the mechanical properties for a steel grade sourced from different suppliers may be the same, the chemical composition may vary significantly. The fabricator should be aware that certain compositional differences may effect the forming, welding, and/or service requirements of the material. It is therefore recommended that the fabricator consult with the producer to understand the effect of chemical composition.
Standard

Chemical Compositions of SAE Carbon Steels

2001-11-26
HISTORICAL
J403_200111
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Potential Standard Steels

2000-11-10
CURRENT
J1081_200011
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS1 followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
Standard

Chemical Compositions of SAE Alloy Steels

2000-06-28
HISTORICAL
J404_200006
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Divison 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
Standard

Chemical Compositions of SAE Carbon Steels

2000-06-28
HISTORICAL
J403_200006
An error has been found in the J403 6/2000 published standard. The following disclaimer explains the correction to the error: Standard J403-Revised 6/2000 - Table 1 for SAE 1006 (UNS10060), a Mn content of .45% Mn max. is allowed for structural shapes, plates, strip, sheets and welded tubing. Similarly, for SAE 1008 (UNS10080), a Mn content of 0.50% Mn max. is allowed for these products. In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry.
Standard

PRODUCT ANALYSIS—PERMISSIBLE VARIATIONS FROM SPECIFIED CHEMICAL ANALYSIS OF A HEAT OR CAST OF STEEL

1995-02-01
CURRENT
J409_199502
Supplementary to the heat or cast analysis, a product analysis may be made on steel in the semifinished or finished form. For definitions and methods of sampling steel for product chemical analysis, refer to SAE J408. A product analysis is a chemical analysis of the semifinished or finished steel to determine conformance to the specification requirements. The range of the specified chemical composition is normally expanded to take into account deviations associated with analytical reproducibility and the heterogeneity of the steel. Individual determinations may vary from the specified heat or cast analysis ranges or limits to the extent shown in Tables 1 through 5. The several determinations of any element in a heat or cast may not vary both above and below the specified range except for lead. Tables 1 through 5 provide permissible limits for various steel forms and composition types.
Standard

Chemical Compositions of SAE Carbon Steels

1994-05-01
HISTORICAL
J403_199405
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Chemical Compositions of SAE Alloy Steels

1991-02-01
HISTORICAL
J404_199102
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Divison 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
Standard

Product Analysis-Permissible Variations From Specified Chemical Analysis of a Heat Or Cast of Steel

1990-12-01
HISTORICAL
J409_199012
Supplementary to the heat or cast analysis, a product analysis may be made on steel in the semifinished or finished form. For definitions and methods of sampling steel for product chemical analysis, refer to SAE J408. A product analysis is a chemical analysis of the semifinished or finished steel to determine conformance to the specification requirements. The range of the specified chemical composition is normally expanded to take into account deviations associated with analytical reproducibility and the heterogeneity of the steel. Individual determinations may vary from the specified heat or cast analysis ranges or limits to the extent shown in Tables 1 through 5. The several determinations of any element in a heat or cast may not vary both above and below the specified range except for lead. Tables 1 through 5 provide permissible limits for various steel forms and composition types.
Standard

Chemical Compositions of SAE Alloy Steels

1989-01-01
HISTORICAL
J404_198901
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Divison 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
Standard

Product Analysis-Permissible Variations From Specified Chemical Analysis of a Heat Or Cast of Steel

1988-12-01
HISTORICAL
J409_198812
Supplementary to the heat or cast analysis, a product analysis may be made on steel in the semifinished or finished form. For definitions and methods of sampling steel for product chemical analysis, refer to SAE J408. A product analysis is a chemical analysis of the semifinished or finished steel to determine conformance to the specification requirements. The range of the specified chemical composition is normally expanded to take into account deviations associated with analytical reproducibility and the heterogeneity of the steel. Individual determinations may vary from the specified heat or cast analysis ranges or limits to the extent shown in Tables 1 through 5. The several determinations of any element in a heat or cast may not vary both above and below the specified range except for lead. Tables 1 through 5 provide permissible limits for various steel forms and composition types.
X