Refine Your Search

Search Results

Technical Paper

Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine under Transient Operating Conditions

2009-04-20
2009-01-1122
In this paper, the results are presented from the analysis of the second stage of an experimental investigation with the aim to provide insight to the cyclic, instantaneous heat transfer phenomena occurring in both the cylinder head and exhaust manifold wall surfaces of a direct injection (DI), air-cooled diesel engine. Results from the first stage of the investigation concerning steady-state engine operation have already been presented by the authors in this series. In this second stage, the mechanism of cyclic heat transfer was investigated during engine transient events, viz. after a sudden change in engine speed and/or load, both for the combustion chamber and exhaust manifold surfaces. The modified experimental installation allowed both long- and short-term signal types to be recorded on a common time reference base during the transient event.
Technical Paper

Parametric Study Based on a Phenomenological Model to Investigate the Effect of Post Fuel Injection on HDDI Diesel Engine Performance and Emissions-Model Validation Using Experimental Data

2008-04-14
2008-01-0641
A major challenge for researchers and engineers in the field of diesel engine development is the simultaneous reduction of both NOx and soot emissions from diesel engines to comply with strict future emission legislation. One of the promising internal measures that focus on the reduction of soot emissions is post fuel injection which does not have a serious effect on NOx emissions. The main parameters involved when using this technique are post fuel quantity and dwell angle between the main and the post fuel injection events. In the present work a detailed computational investigation has been conducted to determine the effect of post fuel injection on engine performance and pollutant emissions (NOx and soot). To this scope, a phenomenological multi-zone combustion model has been used, properly modified to take into account the interaction of post and main injected fuel amounts.
Journal Article

Experimental Assessment of Instantaneous Heat Transfer in the Combustion Chamber and Exhaust Manifold Walls of Air-Cooled Direct Injection Diesel Engine

2008-04-14
2008-01-1326
An experimental analysis is carried out to investigate several heat transfer characteristics during the engine cycle, in the combustion chamber and exhaust manifold walls of a direct injection (DI), air-cooled, diesel engine. For this purpose, a novel experimental installation has been developed, which separates the engine transient temperature signals into two groups, namely the long-and the short- term response ones, processing the respective signals in two independent data acquisition systems. Furthermore, a new pre-amplification unit for fast response thermocouples, appropriate heat flux sensors and an innovative, object-oriented, control code for fast data acquisition have been designed and applied. Experimentally obtained cylinder pressure diagrams together with semi-empirical equations for instantaneous heat transfer were used as basis for the calculation of overall heat transfer coefficient.
Journal Article

Effect of Fuel Chemical Structure and Properties on Diesel Engine Performance and Pollutant Emissions: Review of the Results of Four European Research Programs

2008-04-14
2008-01-0838
During recent years, the deterioration of greenhouse phenomenon, in conjunction with the continuous increase of worldwide fleet of vehicles and crude oil prices, raised heightened concerns over both the improvement of vehicle mileage and the reduction of pollutant emissions. Diesel engines have the highest fuel economy and thus, highest CO2 reduction potential among all other thermal propulsion engines due to their superior thermal efficiency. However, particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines are comparatively higher than those emitted from modern gasoline engines. Therefore, reduction of diesel emitted pollutants and especially, PM and NOx without increase of specific fuel consumption or let alone improvement of diesel fuel economy is a difficult problem, which requires immediate and drastic actions to be taken.
Technical Paper

Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines

2007-04-16
2007-01-0120
Despite the improvement in HD Diesel engine out emissions future emission legislation requires significant reduction of both NOx and particulate matter. To accomplish this task various solutions exist involving both internal and external measures. As widely recognized, it will be possibly required to employ both types of measures to meet future emission limits. Towards this direction, it is necessary to reduce NOx further using internal measures. Several solutions exist in that area, but the most feasible ones according to the present status of technical knowledge are EGR, water injection or fuel/water emulsions. These technologies aim to the reduction of both the gas temperature and oxygen concentration inside the combustion chamber that strongly affect NOx formation. However, there remain open points mainly concerning the effectiveness of water addition techniques and penalties related to bsfc and soot emissions.
Technical Paper

Evaluation of Various Rich Combustion Techniques for Diesel Engines Using Modeling

2007-04-16
2007-01-0671
Considering future emission legislation for HD diesel engines it is apparent that it will be probably necessary to employ A/T devices to achieve them. The main problem concerns the simultaneous control of both NOx and particulate emissions at an acceptable fuel penalty. Concerning particulate matter the use of particulate traps is considered to be a proven technology while for NOx emission control; various solutions exist mainly being the use of SCR catalysts or LNT devices. But LNT traps require periodical regeneration, which is accomplished by generating reducing agents i.e. CO and H2. The present investigation focuses on the regeneration of LNT devices through the engine operating cycle. This can be achieved using two techniques, additional injection of fuel at the exhaust manifold (external measures) or operation at low lambda values in the range of 1.0 or lower (internal measures).
Technical Paper

Sensitivity Analysis of Multi-Zone Modeling for Combustion and Emissions Formation in Diesel Engines

2006-04-03
2006-01-1383
In the present work a sensitivity analysis is conducted using a multi-zone phenomenological model developed in the past by the author's, to estimate the effect of model's constants on engine performance and emissions. The constants used for this analysis are those embedded in the semi-empirical relations of the model, regarding air entrainment rate, combustion rate, ignition delay and evaporation rate. The model is applied on a heavy duty supercharged DI diesel engine and the effect of each of these constants on measurable engine parameters is defined. From the sensitivity analysis the relation between model constants and engine output data is derived. These results are used to define a constants determination procedure. The target is to define a limited number of adjustable constants so that the procedure can be of practical use. Following this, the calibration procedure is applied to determine the value of each constant, at various engine speeds and loads for the engine in question.
Technical Paper

Use of Water Emulsion and Intake Water Injection as NOx Reduction Techniques for Heavy Duty Diesel Engines

2006-04-03
2006-01-1414
Diesel engine manufacturers are currently intensifying their efforts to meet future emission limits that require a drastic reduction of NOx and particulate matter compared to present values. Even though several after-treatment techniques have been developed for tailpipe NOx reduction in heavy duty diesel engines, the in-cylinder control of NOx formation still remains of utmost importance. Various methods have been used to control NOx formation in diesel engines such as retarded injection timing and EGR providing each one of them very promising results. However, use of these techniques is accompanied by penalties in specific fuel consumption and exhaust soot. A promising technology for NOx reduction especially for heavy-duty diesel engines and mainly large scale ones is the addition of water to the combustion chamber to reduce peak combustion temperature that obviously affects NOx formation.
Technical Paper

Use of a Multi-Zone Combustion Model to Interpret the Effect of Injector Nozzle Hole Geometry on HD DI Diesel Engine Performance and Pollutant Emissions

2005-04-11
2005-01-0367
A major challenge in the development of future heavy-duty diesel engines is the reduction of NOx and particulate emissions with minimum penalties in fuel consumption. The further decrease of emission limits (i.e., EPA 2007-2010, Euro 5 and Japan 05) requires new, advanced approaches. The injection system of DI diesel engines has an important role regarding the fulfillment of demands for low pollutant emissions and high engine efficiency. One of the injection system parameters affecting fuel spray characteristics, fuel-air mixing and consequently, combustion and pollutant formation is the geometry of the nozzle hole. A detailed experimental investigation was conducted at UPV-CMT using three different nozzle hole types: a standard, a convergent and a divergent one to discern the effect of nozzle hole conical shape on engine performance and emissions.
Technical Paper

Possibilities to Achieve Future Emission Limits for HD DI Diesel Engines Using Internal Measures

2005-04-11
2005-01-0377
The diesel engine is currently the most efficient powertrain for vehicle propulsion. Unfortunately it suffers from rather high particulate and NOx emissions that are directly related to its combustion mechanism. Future emission legislation requires drastic reduction of NOx and particulate matter compared to present values. Engine manufacturers in their effort to meet these limits propose two solutions: reduction of pollutants inside the combustion chamber using internal measures and reduction at the tailpipe using aftertreatment technology. Currently there are various opinions considering the final solution. Taking into account information related to aftertreatment technology, an effort should be made to reduce pollutants inside the combustion chamber as much as possible. The last is obvious if we account for the even more strict emission limits to be applied after 2010 that will require a combination of aftertreatment and internal measures.
Technical Paper

Operational and Environmental Evaluation of Diesel Engines Burning Oxygen-Enriched Intake Air or Oxygen-Enriched Fuels: A Review

2004-10-25
2004-01-2924
A method to curtail emissions of smoke and other pollutants from diesel engines is to enhance the oxygen supply to their combustion chamber. This can be accomplished by enriching either the intake air stream or the fuel stream with oxygen. Experimental studies concerning the oxygen-enrichment of intake air, have revealed large decrease of ignition delay, drastic decrease of soot emissions as well as reduction of CO and HC emissions while, brake specific fuel consumption (BSFC) remained unaffected and increasing of power output is feasible. However, this technique was accompanied by considerable increase of NOx emissions. Experimental and theoretical studies with oxygenated fuels have demonstrated large decrease of soot emissions, which correlated well with the fuel oxygen content. Reduction of CO and HC emissions with oxygenated fuels was also obtained. However, penalties in both BSFC and NOx emissions have been observed with oxygenation of diesel fuels.
Technical Paper

Validation of a Newly Developed Quasi-Dimensional Combustion Model - Application on a Heavy Duty DI Diesel Engine

2004-03-08
2004-01-0923
This work is a part of an extended investigation conducted by the authors to validate and improve a newly developed quasi-dimensional combustion model. The model has been initially applied on an old technology, naturally aspirated HSDI Diesel engine and the results were satisfying as far as performance and pollutant emissions (Soot and NO) are concerned. But since obviously further and more extended validation is required, in the present study the model is applied on a new technology, heavy-duty turbocharged DI Diesel engine equipped with a high pressure PLN fuel injection system. The main feature of the model is that it describes the air-fuel mixing mechanism in a more fundamental way compared to existing multi-zone phenomenological combustion models, while being less time consuming and complicated compared to the more accurate CFD models. The finite volume method is used to solve the conservation equations of mass, energy and species concentration.
Technical Paper

Multi-Zone Combustion Modeling as a Tool for DI Diesel Engine Development – Application for the Effect of Injection Pressure

2004-03-08
2004-01-0115
During the recent years, extensive research conducted worldwide in the field of Heavy Duty Diesel engines has resulted to a significant improvement of engine performance and emissions. These efforts have been assisted from simulation models providing good results. Towards this direction a multi-zone model developed by the authors has been used in the past to examine the effect of injection pressure on DI diesel engine performance and emissions. The attempt was challenging since no experimental data existed when the calculations were conducted, to support the findings. Eventually, experimental data concerning engine performance and emissions became available using slightly different operating conditions and injection pressure data. In the present study an attempt is made to evaluate the prediction ability of the multi zone model by comparing the theoretical results with experimental data and explain any discrepancies between them.
Technical Paper

Effect of Injection Pressure on the Performance and Exhaust Emissions of a Heavy Duty DI Diesel Engine

2003-03-03
2003-01-0340
During the recent years, extensive research is conducted worldwide for the purpose of tailpipe emission reduction from diesel engines. These efforts resulted in the achievement of very low emission levels for today's diesels. But considering the future legislation it is required a further drastic reduction. Towards this direction, a multi-zone combustion model is used in the present study to investigate the effect of fuel injection pressure level on the performance and pollutant emissions from a Heavy Duty DI diesel engine. For this purpose it is made use of injection pressure histories obtained from a detailed simulation model at various engine operating conditions. The increase of injection pressure is accomplished by increasing the injector opening pressure from 400 up to 1600 bar.
Technical Paper

A New Quasi-Three Dimensional Combustion Model for Prediction of DI Diesel Engines' Performance and Pollutant Emissions

2003-03-03
2003-01-1060
The fundamental understanding of mixture formation and combustion process taking place in a DI diesel engine cylinder is an important parameter for engine design since they affect engine performance and pollutant emissions. Multi-dimensional CFD models are used for detailed simulation of these processes, but suffer from complexity and require significant computational time. The purpose of our work is to develop a new quasi-dimensional 3D combustion model capable of describing the air fuel mixing, combustion and pollutant formation mechanisms, on an engine cycle by cycle basis, needing reasonably low computational time compared to CFD ones, while describing in a more fundamental way the various processes compared to existing multi-zone phenomenological models. As a result, a number of problems associated with the application of multi-zone models are resolved.
Technical Paper

Using a Phenomenological Multi-Zone Model to Investigate the Effect of Injection Rate Shaping on Performance and Pollutants of a DI Heavy Duty Diesel Engine

2002-03-04
2002-01-0074
The direct injection heavy-duty diesel engine is the main propulsion unit for trucks, lories and other heavy-duty vehicles mainly due to its superior efficiency when compared to other existing reciprocating engines. However, this engine suffers from relatively high particulate and nitric oxide emission levels. Considering current legislation for emissions and especially future limits, it seems that a great deal of research is required to satisfy these limits and maintain efficiency at a high level. As widely recognized, the fuel injection mechanism plays an important role for both engine performance and pollutant emissions. The major problem is to seek solutions that enable the control of major pollutants, nitric oxide and particulate matter. For this reason, various injection rate shapes have been proposed which require sophisticated fuel injection equipment and extremely high fuel injection pressures. Now two main categories are considered, common rail fuel injection system and PLN.
Technical Paper

A Simulation Model for the Combustion Process of Natural Gas Engines with Pilot Diesel Fuel as an Ignition Source

2001-03-05
2001-01-1245
During the last years a great deal of efforts have been made to reduce pollutant emissions from Direct Injection Diesel Engines. The use of gaseous fuel as a supplement for liquid diesel fuel seems to be one solution towards these efforts. One of the fuels used is natural gas, which has a relatively high auto - ignition temperature and moreover it is an economical and clean burning fuel. The high auto - ignition temperature of natural gas is a serious advantage against other gaseous fuels since the compression ratio of most conventional diesel engines can be maintained. The main aspiration from the usage of dual fuel (liquid and gaseous one) combustion systems, is the reduction of particulate emissions. In the present work are given results of a theoretical investigation using a model developed for the simulation of gaseous fuel combustion processes in Dual Fuel Engines.
Technical Paper

A Simplified Model for the Spatial Distribution of Temperature in a Motored DI Diesel Engine

2001-03-05
2001-01-1235
The purpose of this paper is to present an alternative method to predict the temperature and flow field in a motored internal combustion engine with bowl in piston. For the fluid flow it is used a phenomenological model which is coupled to a computational fluid dynamic method to solve the energy conservation equation and therefore the temperature field. The proposed method has the advantage of simplicity and low computational time. The computational procedure solves the energy conservation equation by a finite volume method, using a simplified air motion model (estimating axial and radial velocities) to calculate the flow field. The finite volume discretization employs the implicit temporal and hybrid central upwind spatial differencing. The grid used contracts and expands following the piston motion, and the number of nodes in the direction of piston motion vary depending on the crank angle.
Technical Paper

Experimental Investigation to Determine the Effect of Fuel Aromatic Content on Gaseous and Particulate Emissions of IDI Diesel Engines

2000-03-06
2000-01-1172
The diesel engine is a thermal machine with very high efficiency when compared to other similar engines. But up to now its application for automotive purposes is limited due to the existing limits in power concentration, speed and noise. Up to now most diesel engines used for automotive applications are of the Indirect Injection type due to their ability to operate at relatively high rotational speeds and at low Air Fuel Ratios when compared to direct injection diesel engines. Currently the research is mainly concentrated to DI diesel engines due to their lower specific fuel consumption. Nevertheless it is not entirely clear that IDI diesel engines will be completely replaced. But if we consider in general the diesel engine regardless of its type, it is widely recognized that one of the major problems with their application on automobiles is the emission of particulates (smoke etc.).
Technical Paper

Development of New 3-D Multi-Zone Combustion Model for Indirect Injection Diesel Engines with a Swirl Type Prechamber

2000-03-06
2000-01-0587
During the past years most fundamental research worldwide has been concentrated on the direct injection diesel engine (DI). This engine has a lower specific fuel consumption when compared to the indirect injection diesel engine (IDI) used up to now in most passenger cars. But the application of the direct injection engine on passenger cars and light trucks has various problems. These are associated mainly with its ability to operate at high engine speeds due to the very low time available for combustion. To overcome these problems engineers have introduced various techniques such as swirl and squish for the working fluid and the use of extremely high pressure fuel injection systems to promote the air-fuel mixing mechanism. The last requires the solution of various problems associated with the use of the high pressure and relatively small injector holes.
X