Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Common Helmet Design for Launch, Entry, & Abort and EVA Activities – A Discussion on the Design and Selection Process of Helmets for Future Manned Flight

2008-06-29
2008-01-1991
Effective helmet performance is a critical component to achieving safe and efficient missions along the entire timeline; from launch and entry events to operations in a micro-gravity environment to exploration of a planetary surface, the helmet system is the capstone of the pressurized space suit assembly. Each phase of a mission requires uncompromising protection in the form of a robust pressure vessel and adequate protection from impact, both interior and exterior, all while remaining relatively comfortable and providing excellent visual interaction with the environment. Historically there have been large voids between these critical characteristics with the primary focus concerning the pressure vessel first and impact protection and crew comfort second. ILC Dover, NASA-JSC, Gentex Corporation, and Hamilton Sundstrand formed an Integrated Product Team (IPT) and conducted a NASA funded study to research and evaluate new concepts in helmet design.
Technical Paper

Evaluation of the Rear Entry I-Suit during Desert RATS Testing

2006-07-17
2006-01-2143
ILC Dover, LP designed and manufactured a rear entry upper torso prototype for the I-Suit advanced spacesuit. In September 2005 ILC Dover participated in the Desert Research and Technology Study (RATS) led by the Advanced Extravehicular Activity (EVA) team from National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC). Desert RATS is a two-week remote field test at Meteor Crater, Arizona. Team members are from NASA, several universities, and a number of industry partners. These groups come together to gain hands-on experience with advanced spacesuit systems and to develop realistic requirements for future Moon and Mars exploration. Desert RATS gave ILC Dover the opportunity to put the rear entry I-Suit through many rigorous tests. The lessons learned there will be valuable for determining basic requirements for future lunar and Mars missions. Desert RATS utilizes a ‘learn-by-doing’ approach for understanding what future requirements should be developed.
Technical Paper

Morphing Upper Torso: A Novel Concept in EVA Suit Design

2006-07-17
2006-01-2142
The University of Maryland Space Systems Laboratory and ILC Dover LP have developed a novel concept: a soft pressure garment that can be dynamically reconfigured to tailor its shape properties to the wearer and the desired task set. This underlying concept has been applied to the upper torso of a rear entry suit, in which the helmet ring, waist ring and two shoulder rings make up a system of four interconnected parallel manipulators with tensile links. This configuration allows the dynamic control of both the position and orientation of each of the four rings, enabling modification of critical sizing dimensions such as the inter-scye distance, as well as task-specific orientations such as helmet, scye and waist bearing angles. Half-scale and full-scale experimental models as well as an analytical inverse kinematics model were used to examine the interconnectedness of the plates, the role of external forces generated by pressurized fabric, and the controllability of the system.
Technical Paper

Phase VI Glove TMG Evolution

2004-07-19
2004-01-2344
As Extra-Vehicular Activity (EVA) is becoming more challenging and a renewed interest into planetary exploration is being pursued, having a spacesuit glove that is able to perform more complex and dexterous tasks with less hand fatigue is critical. In an effort to build upon an already proven foundation a new investigation has been made into reducing the torque of the Phase VI Glove Thermal Micrometeoroid Garment (TMG) along with improving dexterity and tactility. This paper addresses the makeup of the Phase VI Glove TMG and details the investigation into improving the current design. An investigation into alternative heating methods was also pursued.
Technical Paper

I-Suit Advanced Spacesuit Design Improvements and Performance Testing

2003-07-07
2003-01-2443
The I-Suit has been tested in varying environments at Johnson Space Center (JSC). This includes laboratory mobility testing, KC-135 partial gravity flights, and remote field testing in the Mojave Desert. The experience gained from this testing has provided insight for design improvements. These improvements have been an evolutionary process since 1998 to the present. The design improvements affect existing suit components and introduce new components for systems processing and human/robotic interface. Examples of these design improvements include improved mobility joints, a new helmet with integrated communications and displays capability, and integration of textile switches for control of suit functions and tele-robotic operations. This paper addresses an overview of I-Suit design improvements and results of manned and unmanned performance tests.
Technical Paper

Phase VI Advanced EVA Glove Development and Certification for the International Space Station

2001-07-09
2001-01-2163
Since the early 1980’s, the Shuttle Extra Vehicular Activity (EVA) glove design has evolved to meet the challenge of space based tasks. These tasks have typically been satellite retrieval and repair or EVA based flight experiments. With the start of the International Space Station (ISS) assembly, the number of EVA based missions is increasing far beyond what has been required in the past; this has commonly been referred to as the “Wall of EVA’s”. To meet this challenge, it was determined that the evolution of the current glove design would not meet future mission objectives. Instead, a revolution in glove design was needed to create a high performance tool that would effectively increase crewmember mission efficiency. The results of this effort have led to the design, certification and implementation of the Phase VI EVA glove into the Shuttle flight program.
Technical Paper

Shuttle Space Suit Glove Thermal Protection and Performance Improvement Evolution

1994-06-01
941329
The success of astronauts performing Extra-Vehicular Activity (EVA) is highly dependent on the performance capabilities of their spacesuit gloves. Thermal protection of crewmember's hands has always been a critical concern but has recently become more important because of the increasing role of the crewmember in the manipulation of objects in the environment of space. The utilization of EVA for challenging missions, such as the Hubble Space Telescope (HST) repair and Space Station assembly missions, has prompted the need for improved glove thermal protection. The increased manipulation of hot and cold objects is necessary to complete these complex missions. Thermal protection of the spacesuit glove is accomplished by the Thermal and Micrometeoroid Garment (TMG). The TMG is a multilayered cover that fits over the restraint layer of the spacesuit glove. The TMG is engineered to provide thermal protection for crewmember's hands as well as for the glove bladder and restraint.
X