Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Measured Vehicle Center-of-Gravity Locations - Including NHTSA's Data Through 2008 NCAP

2010-04-12
2010-01-0086
This paper is a printed listing of public domain vehicle center-of-gravity (CG) location measurements conducted on behalf of the National Highway Traffic Safety Administration (NHTSA). This paper is an extension of the 1999 SAE paper titled “Measured Vehicle Inertia Parameters - NHTSA's Data Through November 1998” ( 1 ). The previous paper contained data for 496 vehicles. This paper includes data for 528 additional vehicles tested as part of NHTSA's New Car Assessment Program (NCAP) for year 2001 through year 2008 ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ). The previous data included center-of-gravity location and mass moments-of-inertia for nearly all of the entries. The NCAP involves only the CG location measurements; so the vehicles listed in this paper do not have inertia data. This paper provides a brief discussion of the entries provided in the tabular listings as well as the accuracy of CG height measurements.
Technical Paper

Pole and Vehicle Energy Absorption in Lateral Oblique Impacts with Rigid and Frangible Poles

2008-04-14
2008-01-0170
Many vehicle-to-pole impacts occur when a vehicle leaves the roadway due to oversteer and loss of control in a lateral steering maneuver. Such a loss of control typically results in the vehicle having a significant component of lateral sliding motion as it crosses the road edge, so that impacts with objects off of the roadway often occur to the side of the vehicle. The response of the vehicle to this impact depends on the characteristics of the impacted object, the characteristics of the vehicle in the impacted zone, and the speed and orientation of the vehicle. In situations where the suspension or other stiff portions of a vehicle contacts a wooden pole, it is not uncommon for the pole to fracture. When this occurs, reconstruction of the accident is complicated by the need to evaluate both the energy absorbed by the vehicle as well as the energy absorbed by the pole.
Technical Paper

Automated Steering Controller for Vehicle Testing

2007-08-05
2007-01-3647
Automating road vehicle control can increase the range and reliability of dynamic testing. Some tests, for instance, specify precise steering inputs which human test drivers are only able to approximate, adding uncertainty to the test results. An automated steering system has been developed which is capable of removing these limitations. This system enables any production car or light truck to follow a user-defined path, using global position feedback, or to perform specific steering sequences with excellent repeatability. The system adapts itself to a given vehicle s handling characteristics, and it can be installed and uninstalled quickly without damage or permanent modification to the vehicle.
Technical Paper

A Study of Vehicle Response Asymmetries During Severe Driving Maneuvers

2004-03-08
2004-01-1788
During Phase VI of the National Highway Traffic Safety Administration's (NHTSA) Light Vehicle Rollover Research Program, three of the twenty-six light vehicles tested exhibited significant response asymmetries with respect to left versus right steer maneuvers. This paper investigates possible vehicle asymmetric characteristics and unintended inputs that may cause vehicle asymmetric response. An analysis of the field test data, results from suspension and steering parameter measurements, and a summary of a computer simulation study are also given.
Technical Paper

Measured Vehicle Inertial Parameters-NHTSA’s Data Through November 1998

1999-03-01
1999-01-1336
This paper is primarily a printed listing of the National Highway Traffic Safety Administration’s (NHTSA) Light Vehicle Inertial Parameter Database. This database contains measured vehicle inertial parameters from SAE Paper 930897, “Measured Vehicle Inertial Parameters -NHTSA’s Data Through September 1992” (1), as well as parameters obtained by NHTSA since 1992. The proceeding paper contained 414 entries. This paper contains 82 new entries, for a total of 496. The majority of the entries contain complete vehicle inertial parameters, some of the entries contain tilt table results only, and some entries contain both inertia and tilt table results. This paper provides a brief discussion of the accuracy of inertial measurements. Also included are selected graphs of quantities listed in the database for some of the 1998 model year vehicles tested.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

An Experimental Determination of the Strain History, Deflection Behavior, and Material Properties of a Composite material Rooftop for a Multipurpose Vehicle Part III

1989-02-01
890549
Composite material roof structures for multipurpose vehicles are comprised of a composite shell molded without metal frames as in most automobile rooftops. This paper experimentally analyzes the roof structure performance for a static uniformly distributed load over the roof surface and examines the tensile properties, effects of high temperatures and sound absorption characteristics of the random, chopped glass fiber reinforced epoxy resin material. The roof performance includes the load-strain history and the load-deflection behavior of the structure.
Technical Paper

Review of Pedestrian Safety Research in the United States

1989-02-01
890757
Pedestrian vehicle accidents account for a considerable proportion of all automobile related injuries and deaths each year. Due to the large difference in mass between the pedestrian and the vehicle, pedestrian injury reduction is a formidable task. In spite of these difficulties, world attention is beginning to focus on pedestrian injuries and methods to quantitatively evaluate a vehicle for its pedestrian injury potential. This paper reviews the status of work in the United States on devices and methods for measuring pedestrian impact response. Where data is available test device response is summarized. The state of pedestrian accident research is also reviewed in the light of national and International interest in reducing pedestrian injuries.
Technical Paper

Critical Review of the Use of Seat Belts by Pregnant Women

1989-02-01
890752
Seat belt usage in the United States is increasing dramatically, due in part to legislative action. In addition, education programs have improved public awareness of the need for automotive restraints in achieving crash survival and injury reduction. The safety consciousness level of automobile passengers is particularly strong among pregnant women. It is reasonable to expect wider use of seat belts by expectant mothers due to this acute attention to safety. The literature demonstrates that incorrect usage of seat belts is a cause of injury. This can be especially applicable during pregnancy when changes in anatomy dictate a change in belt positioning, Review of the literature shows that the technical issues associated with the use of current production belt restraint systems by pregnant women has not been addressed.
Technical Paper

An Overview of the Evolution of Computer Assisted Motor Vehicle Accident Reconstruction

1987-10-01
871991
This paper presents an overview of the evolution of computer simulations in vehicle collision and occupant kinematic reconstructions. The basic principles behind these simulations, the origin of these programs and the evolution of these programs from a basic analytical mathematical model to a sophisticated computer program are discussed. In addition, a brief computer development history is discussed to demonstrate how the evolution of computer assisted vehicle accident reconstruction becomes feasible for a reconstructionist. Possible future research in computer reconstruction is also discussed.
X