Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Assessment of the 50th Hybrid III Responses in Blunt Rear Impacts to the Torso

2021-04-06
2021-01-0919
Blunt impacts to the back of the torso can occur in vehicle crashes due to interaction with unrestrained occupants, or cargo in frontal crashes, or intrusion in rear crashes, for example. Six pendulum tests were conducted on the back of an instrumented 50th percentile male Hybrid III ATD (Anthropomorphic Test Device) to determine kinematic and biomechanical responses. The impact locations were centered with the top of a 15-cm diameter impactor at the T1 or at T6 level of the thoracic spine. The impact speed varied from 16 to 24 km/h. Two 24 km/h tests were conducted at the T1 level and showed repeatability of setup and ATD responses. The 16 and 24 km/h tests at T1 and T6 were compared. Results indicated greater head rotation, neck extension moments and neck shear forces at T1 level impacts. For example, lower neck extension was 2.6 times and 3.8 times greater at T1 versus T6 impacts at 16 and 24 km/h, respectively.
Technical Paper

Theories, Facts and Issues About Recliner and Track Release of Front Seats in Rear Impacts

2018-04-03
2018-01-1329
Objective: This study involved a number of different tests addressing theories for recliner and track release of front seats in rear impacts. It addresses the validity of the theories. Method: Several separate test series were conducted to address claims made about recliner and track release of front seats in rear impacts. The following theories were evaluated to see the validity of the issues: 1 Recliner teeth slipping with minimal damage to the teeth 2 Recliner teeth bypass by disengaging and re-engaging under load without damaging the teeth 3 Recliner shaft bending and torque releasing the recliners 4 Track release by heel loading 5 Track release with occupant load on the seat 6 Recliner handle rotation causing recliner release 7 Double pull body block tests Results: Many of the theories were found to be uncorroborated once actual test data was available to judge the merits of the issue raised. The laboratory tests were set-up to specifically address particular issues.
Technical Paper

Rear Impact Tests of Starcraft-Type Seats with Out-of-Position and In-Position Dummies

2011-04-12
2011-01-0272
Objective: This study analyzed available rear impact sled tests with Starcraft-type seats that use a diagonal belt behind the seatback. The study focused on neck responses for out-of-position (OOP) and in-position seated dummies. Methods: Thirteen rear sled tests were identified with out-of-position and in-position 5 th , 50 th and 95 th Hybrid III dummies in up to 47.6 mph rear delta Vs involving Starcraft-type seats. The tests were conducted at Ford, Exponent and CSE. Seven KARCO rear sled tests were found with in-position 5 th and 50 th Hybrid III dummies in 21.1-29.5 mph rear delta Vs involving Starcraft-type seats. In all of the in-position and one of the out-of-position series, comparable tests were run with production seats. Biomechanical responses of the dummies and test videos were analyzed.
Technical Paper

Fracture-Dislocation of the Thoracic Spine in Extension by Upright Seats in Severe Rear Crashes

2011-04-12
2011-01-0274
Purpose: This study presents cases of fracture-dislocation of the thoracic spine in extension during severe rear impacts. The mechanism of injury was investigated. Methods: Four crashes were investigated where a lap-shoulder-belted, front-seat occupant experienced fracture-dislocation of the thoracic spine and paraplegia in a severe rear impact. Police, investigator and medical records were reviewed, the vehicle was inspected and the seat detrimmed. Vehicle dynamics, occupant kinematics and injury mechanisms were determined in this case study. Results: Each case involved a lap-shoulder-belted occupant in a high retention seat with ≻1,700 Nm moment or ≻5.5 kN strength for rearward loading. The crashes were offset rear impacts with 40-56 km/h delta V involving under-ride or override by the impacting vehicle and yaw of the struck vehicle. In each case, the occupant's pelvis was restrained on the seat by the open perimeter frame of the seatback and lap belt.
Journal Article

Jaw Loading Response of Current ATDs

2009-04-20
2009-01-0388
Biomechanical surrogates are used in various forms to study head impact response in automotive applications and for assessing helmet performance. Surrogate headforms include those from the National Operating Committee on Standards for Athletic Equipment (NOCSAE) and the many variants of the Hybrid III. However, the response of these surrogates to loading at the chin and how that response may affect the loads transferred from the jaw to the rest of the head are unknown. To address part of that question, the current study compares the chin impact response performance of select human surrogates to that of the cadaver. A selection of Hybrid III and NOCSAE based surrogates with fixed and articulating jaws were tested under drop mass impact conditions that were used to describe post mortem human subject (PMHS) response to impacts at the chin (Craig et al., 2008). Results were compared to the PMHS response with cumulative variance technique (Rhule et al., 2002).
Journal Article

Vehicle and Occupant Responses in a Friction Trip Rollover Test

2009-04-20
2009-01-0830
Objective: A friction rollover test was conducted as part of a rollover sensing project. This study evaluates vehicle and occupant responses in the test. Methods: A flat dolly carried a Saab 9-3 sedan laterally, passenger-side leading to a release point at 42 km/h (26 mph) onto a high-friction surface. The vehicle was equipped with roll, pitch and yaw gyros near the center of gravity. Accelerometers were placed at the vehicle center tunnel, A-pillar near the roof, B-pillar near the sill, suspension sub-frame and wheels. Five off-board and two on-board cameras recorded kinematics. Hybrid III dummies were instrumented for head and chest acceleration and upper neck force and moment. Belt loads were measured. Results: The vehicle release caused the tires and then wheel rims to skid on the high-friction surface. The trip involved roll angular velocities >300 deg/s at 0.5 s and a far-side impact on the driver’s side roof at 0.94 s. The driver was inverted in the far-side, ground impact.
Technical Paper

Influence of Seating Position on Dummy Responses with ABTS Seats in Severe Rear Impacts

2009-04-20
2009-01-0250
Objective: This study analyzes rear sled tests with a 95th% male and 5th% female Hybrid III dummy in various seating positions on ABTS (All Belt to Seat) seats in severe rear impact tests. Dummy interactions with the deforming seatback and upper body extension around the seat frame are considered. Methods: The 1st series involved an open sled fixture with a Sebring ABTS seat at 30 mph rear delta V. A 95th% Hybrid III dummy was placed in four different seating positions: 1) normal, 2) leaning inboard, 3) leaning forward and inboard, and 4) leaning forward and outboard. The 2nd series used a 5th% female Hybrid III dummy in a Grand Voyager body buck at 25 mph rear delta V. The dummy was leaned forward and inboard on a LeSabre ABTS or Voyager seat. The 3rd series used a 5th% female Hybrid III dummy in an Explorer body buck at 26 mph rear delta V. The dummy was leaned forward and inboard on a Sebring ABTS or Explorer seat.
Journal Article

The Hybrid III Dummy Family Subject to Loading by a Motorized Shoulder Belt Tensioner

2008-04-14
2008-01-0516
Motorized shoulder belt tensioning is a new automotive seatbelt technology which has shown promise to reduce automotive crash injuries. The current study was conducted to determine if the Hybrid III family of dummies is an appropriate biofidelic surrogate for studying motorized shoulder belt tensioning. The objective was to measure torso retraction time, torso position, torso velocity, internal resistive moment, changes in torso curvature and the center of rotation of torso extension during seatbelt tensioning for the Hybrid III family. A previous study developed a protocol and test fixture to measure the biomechanics of volunteers subject to quasi-static loading by a motorized shoulder belt tensioner. A fixture supported the occupant leaning forward and applied shoulder belt tension. Kinematics were quantified by analyzing the motion of reflective markers on the dummy using an eight camera digital video system. A three axis load cell measured internal resistance to extension.
Technical Paper

Rollover Crash Sensing and Safety Overview

2004-03-08
2004-01-0342
This paper provides an overview of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses as well as a bibliography of pertinent literature. Based on the 2001 Traffic Safety Facts published by NHTSA, rollovers account for 10.5% of the first harmful events in fatal crashes; but, 19.5% of vehicles in fatal crashes had a rollover in the impact sequence. Based on an analysis of the 1993-2001 NASS for non-ejected occupants, 10.5% of occupants are exposed to rollovers, but these occupants experience a high proportion of AIS 3-6 injury (16.1% for belted and 23.9% for unbelted occupants). The head and thorax are the most seriously injured body regions in rollovers. This paper also describes a research program aimed at defining rollover sensing requirements to activate belt pretensioners, roof-rail airbags and convertible pop-up rollbars.
Book

Occupant and Vehicle Responses in Rollovers

2004-03-08
During the past decade, there has been a steady increase in studies addressing rollover crashes and injuries. Though rollovers are not the most frequent crash type, they are significant with respect to serious injury and interest in rollovers has grown with the introduction of SUVs, vans, and light trucks. A review of Occupant and Vehicle Responses in Rollovers examines relevant conditions for field roll overs, vehicle responses, and occupant kinetics in the vehicle. This book edited by Dr. David C. Viano and Dr. Chantal S. Parenteau includes 62 technical documents covering 15 years of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses.
Technical Paper

Energy Transfer to an Occupant in Rear Crashes: Effect of Stiff and Yielding Seats

2003-03-03
2003-01-0180
For several decades, there has been a debate on the safety merits of yielding and rigidized (stiff) seats. In 1995, GM adopted requirements for high retention seats and introduced a new generation of yielding seatbacks. These seats have the same stiffness as the yielding seats of the 1980s and early 1990s, but have a strong frame structure and recliners to substantially limit seatback rotation in severe rear crashes. The yielding behavior is given by compliance of the seat suspension across the side structures and an open perimeter frame, which allows the occupant to penetrate into the seatback. The purpose of this study is to compare the energy transfer characteristics and occupant dynamics of yielding and stiff seats in 35 km/h and 16 km/h rear crashes. Based on benchmarking tests, the stiff seatback is defined as one having a 40 kN/m stiffness in rearward loading by a Hybrid dummy.
Technical Paper

Neck Biomechanical Responses with Active Head Restraints: Rear Barrier Tests with BioRID and Sled Tests with Hybrid III

2002-03-04
2002-01-0030
Active head restraints are being used to reduce the risk of whiplash in rear crashes. However, their evaluation in laboratory tests can vary depending on the injury criteria and test dummy. The objective of this study was to conduct barrier tests with BioRID and sled tests with Hybrid III to determine the most meaningful responses related to whiplash risks in real-world crashes. This study involved: (1) twenty-four rear barrier tests of the Saab 9000, 900, 9-3 and 9-5 with two fully instrumented BioRID dummies placed in the front or rear seats and exposed to 24 and 48.3 km/h barrier impacts, and (2) twenty rear sled tests at 5-38 km/h delta V in three series with conventional, modified and SAHR seats using the Hybrid III dummy. A new target superposition method was used to track head displacement and rotation with respect to T1. Insurance data on whiplash claims was compared to the dummy responses.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
Technical Paper

Research Issues on the Biomechanics of Seating Discomfort: An Overview with Focus on Issues of the Elderly and Low-Back Pain

1992-02-01
920130
This paper reviews issues relating to seats including design for comfort and restraint, mechanics of discomfort and irritability, older occupants, and low-back pain. It focuses on the interface between seating technology and occupant comfort, and involves a technical review of medical-engineering information. The dramatic increase in the number of features currently available on seats outreaches the technical understanding of occupant accommodation and ride comfort. Thus, the current understanding of seat design parameters may not adequately encompass occupant needs. The review has found many pathways between seating features and riding comfort, each of which requires more specific information on the biomechanics of discomfort by pressure distribution, body support, ride vibration, material breathability, and other factors. These inputs stimulate mechanisms of discomfort that need to be quantified in terms of mechanical requirements for seat design and function.
Technical Paper

History of Safety Research and Development on the General Motors Energy-Absorbing Steering System

1991-10-01
912890
This paper covers the development of the General Motors Energy Absorbing Steering System beginning with the work of the early crash injury pioneers Hugh DeHaven and Colonel John P. Stapp through developments and introduction of the General Motors energy absorbing steering system in 1966. evaluations of crash performance of the system, and further improvement in protective function of the steering assembly. The contributions of GM Research Laboratories are highlighted, including its safety research program. Safety Car, Invertube, the biomechanic projects at Wayne State University, and the thoracic and abdominal tolerance studies that lead to the development of the Viscous Injury Criterion and self-aligning steering wheel.
Technical Paper

Effectiveness of Safety Belts and Airbags in Preventing Fatal Injury

1991-02-01
910901
Airbags and safety belts are now viewed as complements for occupant protection in a crash. There is also a view that no single solution exists to ensure safety and that a system of protective technologies is needed to maximize safety in the wide variety of real automotive crashes. This paper compares the fatality prevention effectiveness, and biomechanical principles of occupant restraint systems. It focuses on the effectiveness of various systems in preventing fatal injury assuming the restraint is available and used. While lap-shoulder belts provide the greatest safety, airbags protect both belted and unbelted occupants.
Technical Paper

Assessment of Air Bag Deployment Loads

1990-10-01
902324
A study of air bag deployments has indicated that some occupant injury was “unexpected” and might have been related to loading by the inflating bag. Laboratory studies have found “high” loads on surrogates when they are out of a normal seating position and in the path and against an inflating air bag (out-of-position). The current study evaluated laboratory methods for assessing the significance of deployment loads and the interaction mechanics for the situation of an occupant located near or against a steering wheel mounted air bag. Analysis of the field relevance of the results must consider not only factors relating to the assessment of injury risk, but also exposure frequency. The highest responses for the head, neck, or torso were with that body region aligned with and against the air bag module. The risk of severe injury was low for the head and neck, but high when the torso was against and fully covering the air bag module.
Technical Paper

Assessing the Safety Performance of Occupant Restraint Systems

1990-10-01
902328
The purpose of this study was to investigate approaches evaluating the performance of safety systems in crash tests and by analytical simulations. The study was motivated by the need to consider the adequacy of injury criteria and tolerance levels in FMVSS 208 measuring safety performance of restraint systems and supplements. The study also focused on additional biomechanical criteria and performance measures which may augment FMVSS 208 criteria and alternative ways to evaluate dummy responses rather than by comparison to a tolerance level. Additional analysis was conducted of dummy responses from barrier crash and sled tests to gain further information on the performance of restraint systems. The analysis resulted in a new computer program which determined several motion and velocity criteria from measurements made in crash tests.
Technical Paper

Evaluation of the SID Dummy and TTI Injury Criterion for Side impact Testing

1987-11-01
872208
The NHTSA's side impact dummy (SID) was evaluated against what is known of the side impact response of the human chest and responses were compared with data on Hybrid III frontal and EURQSID side impact characteristics. The SID dummy lacks a human-like chest deflection response which is crucial to the injury indicating capability of a dummy, it has a 9.8 kg near-side rib mass which is approximately an order of magnitude greater than that of the human, and it develops impact forces that are nearly three times higher than the recommended human chest response. It possesses characteristics primarily of an inertial device. The thoracic trauma index (TTI) was evaluated as an indicator of side impact injury risk, and design trends and optimized padding characteristics identified with the SID and TTI were compared with those from the Hybrid III dummy and viscous or compression injury criteria.
X