Refine Your Search

Topic

Search Results

Technical Paper

Facilitating the Energy Optimization of Aircraft Propulsion and Thermal Management Systems through Integrated Modeling and Simulation

2010-11-02
2010-01-1787
An integrated, multidisciplinary environment of a tactical aircraft platform has been created by leveraging the powerful capabilities of both MATLAB/Simulink and Numerical Propulsion System Simulation (NPSS). The overall simulation includes propulsion, power, and thermal management subsystem models, which are integrated together and linked to an air vehicle model and mission profile. The model has the capability of tracking temperatures and performance metrics and subsequently controlling characteristics of the propulsion and thermal management subsystems. The integrated model enables system-level trade studies involving the optimization of engine bleed and power extraction and thermal management requirements to be conducted. The simulation can also be used to examine future technologies and advanced thermal management architectures in order to increase mission capability and performance.
Technical Paper

A Dynamic Surrogate Model Technique for Power Systems Modeling and Simulation

2008-11-11
2008-01-2887
Heterogeneous physical systems can often be considered as highly complex, consisting of a large number of subsystems and components, along with the associated interactions and hierarchies amongst them. The simulation of a large-scale, complex system can be computationally expensive and the dynamic interactions may be highly nonlinear. One approach to address these challenges is to increase the computing power or resort to a distributed computing environment. An alternative to improve the simulation computational performance and efficiency is to reduce CPU required time through the application of surrogate models. Surrogate modeling techniques for dynamic simulation models can be developed based on Recurrent Neural Networks (RNN).This study will present a method to improve the overall speed of a multi-physics time-domain simulation of a complex naval system using a surrogate modeling technique.
Technical Paper

A System Dynamics Approach for Dynamic Uncertainty Assessment in a PAV Design Environment

2006-08-30
2006-01-2434
One the most critical barriers to the advancement of Personal Air Vehicles in today's market environment is that the technological capabilities can never seem to outweigh the risks associated with financing such an endeavor. To address such a need, a system dynamics approach with the capability to model the uncertainties in the supply chain is presented in this paper. The overall modeling framework is first presented and the modeling process of the various relevant elements, such as demand prediction and manufacturer analysis, is then described. The aim of this research is ultimately to assess the viability of a next-generation aircraft program beyond the static confines of a net present value approach, through the inclusion of dynamic events and uncertainties that can occur throughout the life-cycle of the aircraft.
Technical Paper

A Comparative Study of a Multi-Gas Generator Fan to a Turbofan Engine on a Vertical Takeoff and Landing Personal Air Vehicle

2006-08-30
2006-01-2435
This paper attempts to assess the benefits of a unique distributed propulsion concept, known as the Multi-Gas Generator Fan (MGGF) system, over conventional turbofan engines on civilian vertical takeoff and landing (VTOL) applications. The MGGF-based system has shown the potential to address the fundamental technical challenge in designing a VTOL aircraft: the significant mismatch between the power requirements at lift-off/hover and cruise. Vehicle-level performance and sizing studies were implemented using the Grumman Design 698 tilt-nacelle V/STOL aircraft as a notional personal air vehicle (PAV), subjected to hypothetical single engine failure (SEF) emergency landing requirements and PAV mission requirements.
Technical Paper

Quiet, Clean, and Efficient, but Heavy - Concerns for Future Fuel Cell Powered Personal Air Vehicles

2006-08-30
2006-01-2436
Unfortunately, the promises of efficient, clean, quiet power that fuel cells offer are balanced by extremely low power densities and great infrastructure-related challenges. Studies by government and industry have investigated their feasibility for primary propulsion in light aircraft. These studies have produced mixed results but have tended to rely on integrating fuel cells into existing airframes, with respectably-performing light sport planes being turned into underpowered show planes with horribly compromised range and payload capabilities. Fuel cells today are in the earliest phases of technological development. As an aircraft propulsion system, they are as advanced as the Wright's reciprocating engine was a hundred years ago.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Supersonic Business Jet Design and Requirements Exploration using Multiobjective Interactive Genetic Algorithms

2005-10-03
2005-01-3398
Although market research has indicated that there is significant demand for a supersonic business aircraft, development of a feasible concept has proven difficult. Two factors contributing to this difficulty are the uncertain nature of the vehicle’s requirements and the fact that conventional design methods are inadequate to solve such non-traditional problems. This paper describes the application of a multiobjective genetic algorithm to the design space exploration of such a supersonic business jet. Results obtained using this method are presented, and give insight into the important decisions that must be made at the early stages of a design project.
Technical Paper

Technology Assessment of a Supersonic Business Jet

2005-10-03
2005-01-3393
This paper presents a quantitative process to track the progress of technology developments within NASA’s Vehicle Systems Program (VSP) as implemented on a Supersonic Business Jet (SBJ). The process, called the Technology Metric Assessment and Tracking (TMAT) process, accounts for the temporal aspects of technology development programs such that technology portfolio assessments, in the form of technological progress towards VSP sector goals, may be tracked and assessed. Progress tracking of internal research and development programs is an essential element to successful strategic endeavors and justification of the pursuit of capital projects [1].
Technical Paper

Variable Cycle Optimization for Supersonic Commercial Applications

2005-10-03
2005-01-3400
Variable cycle engines (VCEs) hold promise as an enabling technology for supersonic business jet (SBJ) applications. Fuel consumption can potentially be minimized by modulating the engine cycle between the subsonic and supersonic phases of flight. The additional flexibility may also contribute toward meeting takeoff and landing noise and emissions requirements. Several different concepts have been and are currently being investigated to achieve variable cycle operation. The core-driven fan stage (CDFS) variable cycle engine is perhaps the most mature concept since an engine of this type flew in the USAF Advanced Tactical Fighter prototype program in the 1990s. Therefore, this type of VCE is of particular interest for potential commercial application. To investigate the potential benefits of a CDFS variable cycle engine, a parametric model is developed using the NASA Numerical Propulsion System Simulation (NPSS).
Technical Paper

A Collaborative Design Environment to Support Multidisciplinary Conceptual Systems Design

2005-10-03
2005-01-3435
The Aerospace Systems Design Laboratory at the Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, has recently created the “Collaborative Design Environment” (CoDE), a next-generation design facility supporting efficient, rapid-turnaround conceptual design. The CoDE combines cost-effective, off-the-shelf information technology with advanced design methodologies and tools in a customized, user-centered physical layout that harnesses the power of creative design teams. The CoDE will enable researchers to develop, test and apply new approaches to conceptual design, and to improve modeling and simulation fidelity. It will also support sponsored design projects as well as student teams participating in national design competitions.
Technical Paper

Program and Design Decisions in an Uncertain and Dynamic Market: Making Engineering Choices Matter

2005-10-03
2005-01-3433
The success of a modern, complex engineering program is inherently a dynamic economic exercise. Because of this it is not possible to fully grasp what decisions are important to the success of a program using only the typical static or “frozen” design methods and processes. This paper attempts to provide a basic understanding of these design processes and illustrate what they leave to be desired when used in a true market environment. Further, this paper illustrates a dynamic method using tools from engineering, management, and finance to overcome these weaknesses. The dynamic environment allows decision parameters and metrics to change, along with the potential for true competition. Furthermore, it allows the engineer to determine which design choices matter most to the creation of a successful program and how to make the most appropriate choices in the face of uncertainty.
Technical Paper

Technology Portfolio Assessments Using a Multi-Objective Genetic Algorithm

2004-11-02
2004-01-3144
This paper discusses the use of a Multi-Objective Genetic Algorithm to optimize a technology portfolio for a commercial transport. When incorporating technologies into a conceptual design, there are often multiple competing objectives that determine the benefits and costs of a certain portfolio. The set of designs that achieves the best values of these objectives will fall along a Pareto front that outlines the tradeoffs which will give the optimal design. Multi-Objective Genetic Algorithms determine the Pareto set by giving higher priority to dominant portfolios in the evolutionary optimization techniques of selection and reproduction. When determining the final Pareto optimal set it is important to ensure that only compatible portfolios of technologies are present.
Technical Paper

Methodology for the Conceptual Design Process of Morphing Configurations

2004-11-02
2004-01-3127
Traditional historical-data based design processes are clearly inappropriate for morphing vehicles. There are no historical data for these type of configurations, the appropriate mission for this class of vehicles is unknown, and there are many unique aspects of a morphing vehicle that are dependent on the specific concept chosen. The design process proposed in this paper attempts to account for these difficulties in a flexible and transparent manner while leveraging existing tools and processes wherever possible.
Technical Paper

Response Surface Utilization in the Exploration of a Supersonic Business Jet Concept with Application of Emerging Technologies

2003-09-08
2003-01-3059
Commercial and independent market assessments continue to reveal a strong market desire for a supersonic business jet capable of meeting the requirements for supersonic, overland flight. However, the challenge of meeting the as-yet undefined regulations for overland flight, as well as meeting current and future noise and emission regulations, is daunting. An integrated modeling and simulation environment, based on the creation of response surface metamodels, allows for the rapid evaluation of a design space. From this environment the effects on metrics such as emissions, economics, sonic boom profiles and noise levels can rapidly be seen and manipulated. Such an environment also allows the application of technologies to the vehicle in order to evaluate their potential impact on the system-level metrics.
Technical Paper

Aerospace Systems Design: Economics as a New Way of Thinking?

2003-09-08
2003-01-3058
One of the major impetuses for the development of modern, robust design methodologies is the need for affordable aerospace systems. Because the affordability of a system is directly tied to the economics of developing, manufacturing, operating, and disposing of that system, it has become common practice to perform an economic analysis of a potential system to evaluate its viability. Additionally, as needs for improved modeling, analysis, and evaluation capability have arisen, several techniques which have proved themselves popular in economics have been adopted. While adopting these techniques has improved the capabilities of the designer/engineer, they do not proceed far enough. That is aerospace systems design, and consequently all complex systems design, could actually be considered an exercise in economics. All of the players, i.e. designers, firms, end users, and the systems themselves can be considered microeconomic entities.
Technical Paper

Bi-level Integrated System Synthesis: A Proposed Application to Aeroelastic Constraint Analysis in a Conceptual Design Environment

2003-09-08
2003-01-3060
The projection of aeroelastic constraints in the design space has long been a want in the design process of vehicles. These properties are usually not established accurately until later phases of design. The desire is to bring another interactive constraint to the conceptual design phase and allow the designer to see the impact of design decisions on aeroelastic characteristics. Even though a number of analysis and optimization tools have been developed to support aeroelastic analysis and optimization in the flight vehicle design process, the toolbox is far from being complete. The results often cannot be obtained in a manner timely enough and the natural division of the engineering team into specialty groups is not supported very well by the aerodynamic-structures monolithic codes typically in the above toolbox. The monolithic codes are also not amenable to the use of concurrent processing now made available by computer technology.
Technical Paper

A Technique for Use of Gaussian Processes in Advanced Meta-Modeling

2003-09-08
2003-01-3051
Current robust design methods rely heavily on meta-modeling techniques to reduce the total computational effort of probabilistic explorations to a combinatorially manageable size. Historically most of these meta-models were in the form of Response Surface Equations (RSE). Recently there has been interest in supplementing the RSE with techniques that better handle non-linear phenomena. One technique that has been identified is the Gaussian Process (GP). The GP has fewer initial assumptions when compared to the linear methods used by RSEs and, therefore, fewer limitations. The initial implementation and employment techniques proposed in current literature for use with the GP are barely modified versions of those used for RSEs. A better, more tailored technique needs to be developed to properly make use of the nature of the GP, and minimize the effect of some of its limitations. Such a technique would allow for rapid development of a reusable, computationally efficient and accurate GP.
Technical Paper

Quiet Supersonic Jet Engine Performance Tradeoff Analysis Using a Response Surface Methodology Approach

2002-11-05
2002-01-2929
Recent market studies indicate a renewed interest for a quiet Supersonic Business Jet (SBJ). The success of such a program will be strongly dependent upon the achievement of stringent engine noise, emissions and fuel consumption goals. This paper demonstrates the use of advanced design methods to develop a parametric design space exploration environment which will be ultimately used for the identification of an engine concept capable of satisfying acoustic levels imposed by FAR part 36 (stage IV) and NOx and CO2 standards as stated in the 1996 ICAO. The engine performance is modeled through the use of Response Surface and Design of Experiments Techniques, enabling the designer/decision-maker to change initial engine parameter values to detect the effects of the responses in a time efficient manner. Engine performance and engine weight results are obtained through physics-based engine analysis codes developed by NASA.
Technical Paper

A Technique for Selecting Emerging Technologies for a Fleet of Commercial Aircraft to Maximize R&D Investment

2001-09-11
2001-01-3018
A solid business case is highly dependent upon a strategic technology research and development plan in the early phases of product design. The embodiment of a strategic technology development plan is the identification and subsequent funding of high payoff technology programs that can maximize a company’s return on investment, which entails both performance and economic objectives. This paper describes a technique whereby the high payoff technologies may be identified across multiple platforms to quantitatively justify resource allocation decisions and investment opportunities. A proof of concept investigation was performed on a fleet of subsonic, commercial aircraft.
Technical Paper

An Improved Procedure for Prediction of Drag Polars of a Joined Wing Concept Using Physics-Based Response Surface Methodology

2001-09-11
2001-01-3015
Creation and utilization of accurate drag polars is essential in the aircraft sizing and synthesis process. Existing sizing and synthesis codes are based on historical data and cannot capture the aerodynamics of a non-conventional aircraft at the conceptual design phase. The fidelity of the aerodynamic analysis should be enhanced to increase the designer’s confidence in the results. Hence, there is need for a physics-based approach to generate the drag polars of an aircraft lying outside the conventional realm. The deficiencies of the legacy codes should be removed and replaced with higher fidelity meta-model representations. This is facilitated with response surface methodology (RSM), which is a mathematical and statistical technique that is suited for the modeling and analysis of problems in which the responses, the drag coefficients in this case, are influenced by several variables. The geometric input variables are chosen so that they represent a multitude of configurations.
X