Refine Your Search

Topic

Search Results

Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

2013-09-24
2013-01-2421
With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Technical Paper

Model-Based Diesel HCCI Combustion Phasing Controller in Integrated System Level Modeling

2010-04-12
2010-01-0886
This work integrated a CA10 (crank angle at 10% heat release) controller into an integrated engine, emissions and aftertreatment model platform. Two CA10 phasing targets were chosen to analyze how advancing (or retarding) the target combustion phasing (CA10) affect the formation of NO and CO. The effect of intake valve closure (IVC) timing, which is the control mechanism for maintaining the target combustion phasing, on the cylinder trapped mass, and hence the charge temperature after compression is detailed. Finally, the relation between combustion phasing and the blow-down process leading to the exhaust process is discussed. Retarding the target combustion phasing by two degrees saw a 330 K drop in compressed charge temperature and a quadrupled reduction of peak NO emitted. Peak NO₂ emission reduced three times on account of the same. However, an increase in CO emission was observed when the combustion phasing was advanced.
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Technical Paper

Model-Based Feed-Forward Control of Diesel HCCI Engine Transients

2009-04-20
2009-01-1133
System level modeling was used to develop a suitable control strategy for Diesel Homogeneous Charge Compression Ignition (HCCI) transient operation. Intake temperature and pressure, engine speed, engine load, cylinder wall temperature, exhaust gas recirculation, etc. all significantly affect combustion phasing generating a scenario where simple ECU mapping techniques prove inadequate. Two-stage fuels such as diesel fuel pose additional challenges for accurate combustion control. Low-temperature cool-flame chemical heat release can significantly alter the thermodynamic state of the trapped gaseous mixture and hence combustion phasing. Operator and environmentally induced transients can rapidly alter combustion phasing parameters suggesting a need for model-based control. A model-based control strategy featuring the identified essential physics has been developed to control diesel HCCI combustion phasing through transient operation.
Technical Paper

Validation of Advanced Combustion Models Applied to Two-Stage Combustion in a Heavy Duty Diesel Engine

2009-04-20
2009-01-0714
Two advanced combustion models have been validated with the KIVA-3V Release 2 code in the context of two-stage combustion in a heavy duty diesel engine. The first model uses CHEMKIN to directly integrate chemistry in each computational cell. The second model accounts for flame propagation with the G-equation, and CHEMKIN predicts autoignition and handles chemistry ahead of and behind the flame front. A Damköhler number criterion was used in flame containing cells to characterize the local mixing status and determine whether heat release and species change should be a result of flame propagation or volumetric heat release. The purpose of this criterion is to make use of physical and chemical time scales to determine the most appropriate chemistry model, depending on the mixture composition and thermodynamic properties of the gas in each computational cell.
Technical Paper

Investigation into Different DPF Regeneration Strategies Based on Fuel Economy Using Integrated System Simulation

2009-04-20
2009-01-1275
An integrated system model containing sub-models for a multi-cylinder diesel engine, NOx and soot(PM) emissions, diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) has been developed to simulate the engine and aftertreatment systems at transient engine operating conditions. The objective of this work is two-fold; ensure correct implementation of the integrated system level model and apply the integrated model to understand the fuel economy trade-off for various DPF regeneration strategies. The current study focuses on a 1.9L turbocharged diesel engine and its exhaust system. The engine model was built in GT-Power and validated against experimental data at full-load conditions. The DPF model is calibrated for the current engine application by matching the clean DPF pressure drop for different mass flow rates. Load, boost pressure, speed and EGR controllers are tuned and linked with the current engine model.
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Journal Article

Effects of Methyl Ester Biodiesel Blends on NOx Emissions

2008-04-14
2008-01-0078
Effects of methyl ester biodiesel fuel blends on NOx emissions are studied experimentally and analytically. A precisely controlled single cylinder diesel engine experiment was conducted to determine the impact of a 20% blend of soy methyl ester biodiesel (B20) on NOx emissions. The data were then used to calibrate KIVA chemical kinetics models which were used to determine how the biodiesel blend affects NOx production during the combustion process. In addition, the impact on the engine control system of the lower specific energy content of biodiesel was determined. Both factors, combustion and controls, must be taken into account when determining the net NOx effect of biodiesel compared to conventional diesel fuel. Because the magnitude and even direction of NOx effect changes with engine load, the NOx effect associated with burning biodiesel blends over a duty cycle depends on the duty cycle average power and fuel cetane number.
Technical Paper

Combustion Modeling of Conventional Diesel-type and HCCI-type Diesel Combustion with Large Eddy Simulations

2008-04-14
2008-01-0958
A general combustion model, in the context of large eddy simulations, was developed to simulate the full range of combustion in conventional diesel-type and HCCI-type diesels. The combustion model consisted of a Chemkin sub-model and an Extended Flamelet Time Scale (EFTS) sub-model. Specifically, Chemkin was used to simulate auto-ignition process. In the post-ignition phase, the combustion model was switched to EFTS. In the EFTS sub-model, combustion was assumed to be a combination of two elementary combustion modes: homogeneous combustion and flamelet combustion. The combustion index acted as a weighting factor blending the contributions from these two modes. The Chemkin sub-model neglected the subgrid scale turbulence-chemistry interactions whereas the EFTS model took them into account through a presumed PDF approach. The model was used to simulate an early injection mode of a Cummins DI diesel engine and a mode of a Caterpillar DI diesel engine.
Technical Paper

Integrated Engine, Emissions, and Exhaust Aftertreatment System Level Models to Simulate DPF Regeneration

2007-10-29
2007-01-3970
An integrated system model containing sub-models for diesel engine, emissions, and aftertreatment devices has been developed. The objective is to study engine-device and device-device interactions. The emissions sub-models used are for NOx and PM (particulate matter) prediction. The aftertreatment sub-models used include a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF). Controllers have also been developed to allow for transient simulations, active DPF regeneration, and prevention/control of runaway DPF regenerations. The integrated system-level model has been used to simulate DPF regeneration via exhaust fuel injection ahead of the DOC. In addition, the controller model can use intake throttling to assist in active DPF regeneration if needed. Regeneration studies have been done for both steady engine load and with load transients. High to low engine load transients are of particular interest because they can lead to runaway DPF regeneration.
Technical Paper

Combustion Modeling of Diesel Combustion with Partially Premixed Conditions

2007-04-16
2007-01-0163
Two turbulent combustion modeling approaches, which were large eddy simulations in conjunction with detailed kinetics (LES-CHEMKIN) and Reynolds Averaged Navier Stokes with detailed kinetics (RANS-CHEMKIN), were used to model two partially premixed engine conditions. The results were compared with average pressure and heat release data, as well as images of in-cylinder ignition chemiluminescence and OH radical distributions. Both LES-CHEMKIN and RANS-CHEMKIN match well with experimental average data. However, LES-CHEMKIN has advantages over RANS-CHEMKIN in predicting the details of location of ignition sites, temperature as well as OH radical distributions. Therefore, LES offers more realistic representations of the combustion process. As a further improvement aiming at saving computational cost and accounting for turbulence-chemistry interactions, a flamelet time scale (FTS) combustion model is coupled with CHEMKIN to predict the entire combustion process. In this new approach (i.e.
Technical Paper

Development of a System Level Soot-NOx Trap Aftertreatment Device Model

2006-10-16
2006-01-3287
A Soot-NOx Trap (SNT) is a combinatorial aftertreatment device intended to decrease both particulate and NOx emissions simultaneously. A system-level Soot-NOx Trap model was developed by adding Lean NOx Trap kinetics to a 1D Diesel Particulate Filter model. The hybrid model was validated against each parent model for the limiting cases, then exercised to investigate the interacting redox behavior. Modulations in temperature and exhaust air-fuel ratio were investigated for their ability to facilitate particulate oxidation and NOx reduction in the trap.
Technical Paper

Flamelet Modeling with LES for Diesel Engine Simulations

2006-04-03
2006-01-0058
Large Eddy Simulation (LES) with a flamelet time scale combustion model is used to simulate diesel combustion. The flamelet time scale model uses a steady-state flamelet library for n-heptane indexed by mean mixture fraction, mixture fraction variance, and mean scalar dissipation rate. In the combustion model, reactions proceed towards the flamelet library solution at a time scale associated with the slowest reaction. This combination of a flamelet solution and a chemical time scale helps to account for unsteady mixing effects. The turbulent sub-grid stresses are simulated using a one-equation, non-viscosity LES model called the dynamic structure model. The model uses a tensor coefficient determined by the dynamic procedure and the subgrid kinetic energy. The model has been expanded to include scalar mixing and scalar dissipation. A new model for the conditional scalar dissipation has been developed to better predict local extinction.
Technical Paper

Investigation of the Effect of DPF Loading and Passive Regeneration on Engine Performance and Emissions Using an Integrated System Simulation

2006-04-03
2006-01-0263
An integrated system model containing sub-models for a diesel engine, NOx and soot emissions, and a diesel particulate filter (DPF) has been used to simulate stead-state engine operating conditions. The simulation results have been used to investigate the effect of DPF loading and passive regeneration on engine performance and emissions. This work is the continuation of previous work done to create an overall diesel engine/exhaust system integrated model. As in the previous work, a diesel engine, exhaust system, engine soot emissions, and diesel particulate filter (DPF) sub-models have been integrated into an overall model using Matlab Simulink. For the current work new sub-models have been added for engine-out NOx emissions and an engine feedback controller. The integrated model is intended for use in simulating the interaction of the engine and exhaust aftertreatment components.
Technical Paper

Using Large Eddy Simulations to Study Mixing Effects in Early Injection Diesel Engine Combustion

2006-04-03
2006-01-0871
Early direct injection with HCCI like properties is characterized by the presence of an ignition dwell - the interval between end of fuel injection and start of combustion, during which fuel-air mixing occurs. Previous work by Jhavar and Rutland (2005) has focused on investigating different methods to affect fuel-air mixing during the ignition dwell. That study helped to evaluate the relative influence of various mixing control strategies to achieve ignition control. In this study, we attempt to look into the mixture preparation process in more detail. Therefore, turbulence is studied using Large Eddy Simulation (LES) models in place of Reynolds Averaged Navier Stokes (RANS) models. While LES is computationally more expensive than RANS, it depicts the flow structure more accurately. Therefore, it can be applied to engines in order to gain a better representation of local mixing as well as accurately simulate unsteady flow behavior in engines.
Technical Paper

A Modeling Investigation of Combustion Control Variables During DI-Diesel HCCI Engine Transients

2006-04-03
2006-01-1084
A comprehensive system level modeling approach is used to understand the effects of the various physical actuators during diesel HCCI transients. Control concepts during transient operations are simulated using a set of actuators suitable for combustion control in diesel HCCI engines (intake valve actuation, injection timing, cooled EGR, intake boost pressure and droplet size). The impact of these actuating techniques on the overall engine performance is quantified by investigating the amount of actuation required, timing of actuation and the use of a combination of actuators. Combined actuation improved actuation space that can be used to phase combustion timing better and in extending the operating range. The results from transient simulations indicate that diesel HCCI operation would benefit from the combined actuation of intake valve closure, injection timing, boost and cooled EGR.
Technical Paper

A New Approach to Model DI-Diesel HCCI Combustion for Use in Cycle Simulation Studies

2005-10-24
2005-01-3743
An approach to accurately capture overall behavior in a system level model of DI Diesel HCCI engine operation is presented. The modeling methodology is an improvement over the previous effort [36], where a multi-zone model with detailed chemical kinetics was coupled with an engine cycle simulation code. This multi-zone technique was found to be inadequate in capturing the fuel spray dynamics and its impact on mixing. An improved methodology is presented in this paper that can be used to model fully and partially premixed charge compression ignition engines. A Computational Fluid Dynamics (CFD) driven model is used where the effects of fuel injection, spray evolution, evaporation, and turbulent mixing are considered. The modeling approach is based on the premise that once the initial spray dynamics are correctly captured, the overall engine predictions during the combustion process can be captured with good accuracy.
Technical Paper

Integration of Diesel Engine, Exhaust System, Engine Emissions and Aftertreatment Device Models

2005-04-11
2005-01-0947
An overall diesel engine and aftertreatment system model has been created that integrates diesel engine, exhaust system, engine emissions, and diesel particulate filter (DPF) models using MATLAB Simulink. The 1-D engine and exhaust system models were developed using WAVE. The engine emissions model combines a phenomenological soot model with artificial neural networks to predict engine out soot emissions. Experimental data from a light-duty diesel engine was used to calibrate both the engine and engine emissions models. The DPF model predicts the behavior of a clean and particulate-loaded catalyzed wall-flow filter. Experimental data was used to validate this sub-model individually. Several model integration issues were identified and addressed. These included time-step selection, continuous vs. limited triggering of sub-models, and code structuring for simulation speed. Required time-steps for different sub models varied by orders of magnitude.
Technical Paper

Effects of Mixing on Early Injection Diesel Combustion

2005-04-11
2005-01-0154
Ignition dwell is defined as the interval between end of fuel injection and start of combustion in early injection diesel combustion that exhibits HCCI-like characteristics. In this project, the impact of in-cylinder temperature and fuel-air mixing on the ignition dwell was investigated. The engine cycle was simulated using the 3-D CFD code KIVA-3V. Work done by Klingbeil (2002) has shown that ignition dwell allows more time for fuel and air to mix and drastically reduces emissions of NOX and particulate matter. Temperature is known to have a direct impact on the duration of ignition dwell. However, initial fuel-air distribution and mixing (i.e. at the end of fuel injection) may also impact the duration of ignition dwell. To investigate this, variations in EGR, fuel injection timing, engine valve actuation and swirl were simulated. The aim was to use these techniques to generate varying levels of fuel-air mixing and to check if ignition dwell was affected.
Technical Paper

Cycle Simulation Diesel HCCI Modeling Studies and Control

2004-10-25
2004-01-2997
An integrated system based modeling approach has been developed to understand early Direct Injection (DI) Diesel Homogeneous Charge Compression Ignition (HCCI) process. GT-Power, a commercial one-dimensional (1-D) engine cycle code has been coupled with an external cylinder model which incorporates sub-models for fuel injection, vaporization, detailed chemistry calculations (Chemkin), heat transfer, energy conservation and species conservation. In order to improve the modeling accuracy, a multi-zone model has been implemented to account for temperature and fuel stratifications in the cylinder charge. The predictions from the coupled simulation have been compared with experimental data from a single cylinder Caterpillar truck engine modified for Diesel HCCI operation. A parametric study is conducted to examine the effect of combustion timing on four major control parameters. Overall the results show good agreement of the trends between the experiments and model predictions.
X