Refine Your Search

Topic

Search Results

Standard

Numerical Modeling Techniques for Jet Engine Test Cell Aerodynamics

2019-03-21
CURRENT
AIR6355
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines, and particularly for those who might be interested in investigating steady-state performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of numerical modeling and simulation. It is not the intent of this standard to provide specific test cell design recommendations, which are covered in the reference documentation.
Standard

Test Facility Shakedown and Commissioning

2017-11-29
CURRENT
AIR6364
The paper discusses in general terms the activities required to be undertaken or demonstrated during the establishment of the facility such as: the assessment checks prior to forwarding to the end users site for embodiment into the facility system the establishment of the facility such as trial installations of hardware, functionality checking of lifting transportation and access systems, centerline pull checks, pressure testing of fuel and air start systems, flushing of wet systems and electrical continuity checking. the commissioning of the facility such as instrumentation calibrations, engine starts, engine running, assessment of command and control system, assessment of DAS system, aerodynamic and acoustic surveys. The paper will concentrate on the main engineering engine related aspects of the facility and will not necessarily contain information on the construction validation activities such as HVAC, electrical, facility fire system, waste water etc.
Standard

Physical Modeling Techniques for Jet Engine Test Cell Aerodynamics

2016-10-21
CURRENT
AIR4827B
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
Standard

Inlet Airflow Ramps for Gas Turbine Engine Test Cells

2013-12-10
CURRENT
AIR5306A
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of gas turbine engines and particularly for those who might be interested in upgrading their existing engine test facility to meet the airflow requirements for higher thrust engine models. The intellectual property rights on the material contained in this document are protected by US Patent Number 5,293,775 dated March 15, 1994 assigned to United Technologies Corporation, Hartford, Connecticut, USA. Any individual, or organization, attempting to use the system described in this document should get a clearance from United Technologies Corporation, to avoid any potential liability arising from patent infringement.
Standard

Gas Turbine Engine Fuel Nozzle Test Procedures

2013-12-10
CURRENT
ARP4865A
The intent of this SAE Aerospace Recommended Practice (ARP) is to define and recommend to the Aerospace Industry standardized test procedures for establishing fuel nozzle operating performance including types of tests, controlled and measured parameters, and test configurations.
Standard

Test Cell Mass Fuel Flow Measurement Using Coriolis Flow Meters

2012-04-04
CURRENT
AIR6202
The scope of this information report applies to the steady state measurement of direct mass fuel flow in gas turbine engine test cells. A measurement accuracy, and hence uncertainty of between ±0.1 to ±0.2% of value is believed to be achievable for liquid flow applications with some meter models/installations. Whilst capable of general transient measurement in 50 to 100 Hz region, this type of fuel meter is not capable of rapid transient measurement (in 100 to 250 Hz region). It is also not currently considered suitable for "in flight" fuel flow measurement.
Standard

Test Cell Thrust Measurement

2011-06-29
CURRENT
AIR4951
Thrust measurement systems come in many sizes and shapes, with varying degrees of complexity, accuracy and cost . For the purposes of this information report, the discussions of thrust measurement will be limited to axial thrust in single-axis test systems.
Standard

Standard Specification for Turbine Flowmeters

2011-06-10
CURRENT
AS5304
This is a SAE Standard specification with minimum performance characteristics for Turbine Flowmeter (TFM) that pertains only to sizes from ½ to 2 inches. The utilization of TFM is for hydrocarbon liquid fuel volumetric flow measurements. This Standard specifically excludes smart electronics in accomplishing the defined performance objectives. Users of this Standard should specify other TFM characteristics required to satisfy their application and utilization in operational environment. A User should understand fit and function of the TFM and define end user specific fit and function requirements. The TFM should be calibrated by the manufacturer should be based upon end user requirements and presented as Roshko versus Strouhal at a reference temperature. The Supplier shall be prepared to show evidence to User that the device demonstrates compliance with all requirements identified in this Standard.
Standard

Infrasound Phenomenon in Engine Test Cells

2010-02-01
CURRENT
AIR5303
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground level testing of large turbofan and turbojet engines, and particularly those who are interested in infrasound phenomena.
Standard

Modeling Techniques for Jet Engine Test Cell Aerodynamics

2009-06-16
HISTORICAL
AIR4827A
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
Standard

Design Considerations for Enclosed Turbofan/Turbojet Engine Test Cells

2009-05-13
CURRENT
AIR4869A
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities.
Standard

APU Gas Turbine Engine Test Cell Correlation

2007-12-19
HISTORICAL
ARP5435
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of APU (auxiliary power unit) engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. The baseline performance is generally determined at the OEM designated test facility.
Standard

Turboshaft/Turboprop Gas Turbine Engine Test Cell Correlation

2003-09-25
HISTORICAL
ARP4755A
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine.
Standard

Inlet Airflow Ramps for Gas Turbine Engine Test Cells

2000-07-01
HISTORICAL
AIR5306
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of gas turbine engines and particularly for those who might be interested in upgrading their existing engine test facility to meet the airflow requirements for higher thrust engine models. The intellectual property rights on the material contained in this document are protected by US Patent Number 5,293,775 dated March 15, 1994 assigned to United Technologies Corporation, Hartford, Connecticut, USA. Any individual, or organization, attempting to use the system described in this document should get a clearance from United Technologies Corporation, to avoid any potential liability arising from patent infringement.
Standard

Modeling Techniques for Jet Engine Test Cell Aerodynamics

1999-05-01
HISTORICAL
AIR4827
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
Standard

GAS TURBINE ENGINE FUEL NOZZLE TEST PROCEDURES

1997-01-01
HISTORICAL
ARP4865
The intent of this SAE Aerospace Recommended Practice (ARP) is to define and recommend to the Aerospace Industry standardized test procedures for establishing fuel nozzle operating performance including types of tests, controlled and measured parameters, and test configurations.
Standard

DESIGN CONSIDERATIONS FOR ENCLOSED TURBOFAN/TURBOJET ENGINE TEST CELLS

1995-10-01
HISTORICAL
AIR4869
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities.
X