Refine Your Search

Topic

Search Results

Technical Paper

Analysis of Dual Fuel Hydrogen/Diesel Combustion Varying Diesel and Hydrogen Injection Parameters in a Single Cylinder Research Engine

2024-04-09
2024-01-2363
In the perspective of a reduction of emissions and a rapid decarbonisation, especially for compression ignition engines, hydrogen plays a decisive role. The dual fuel technology is perfectly suited to the use of hydrogen, a fuel characterized by great energy potential. In fact, replacing, at the same energy content, the fossil fuel with a totally carbon free one, a significant reduction of the greenhouse gases, like carbon dioxide and total hydrocarbon, as well as of the particulate matter can be obtained. The dual fuel with indirect injection of gaseous fuel in the intake manifold, involves the problem of hydrogen autoignition. In order to avoid this difficulty, the optimal conditions for the injection of the incoming mixture into the cylinder were experimentally investigated. All combustion processes are carried out on a research engine with optical access. The engine speed has is set at 1500 rpm, while the EGR valve is deactivated.
Technical Paper

High Pressure Hydrogen Injector Sizing Using 1D/3D CFD Modeling for a Compression Ignition Single Cylinder Research Engine

2024-04-09
2024-01-2615
With the aim of decarbonizing the vehicles fleet, the use of hydrogen is promising solution. Hydrogen is an energy carrier, carbon-free, with high calorific value and with no CO2 and HC emissions burning in ICE. Hydrogen use in spark ignition engines has already been extensively investigated and optimized. On the other hand, its use in compression ignition engines has been little developed and, therefore, there is a lack of information regarding the combustion in ultra-lean conditions, typical of diesel engines. Several applications employ dual fuel combustion for the easy management of the PFI injection system to be applied in addition to the DI Common Rail system. However, this mode suffers from several problems regarding the management of the maximum flow rate of hydrogen into the intake. In particular, to avoid throwing hydrogen into the exhaust, injection must be started after the valve crossing.
Technical Paper

CFD Analysis of the Injection Strategy of a Dual Fuel Compression Ignition Engine Supplied with Hydrogen

2023-08-28
2023-24-0064
Although in the latest years the use of compression ignition engines has been a thread of discussion in the automotive field, it is possible to affirm that it still will be a fundamental producer of mechanical power in other sectors, such as naval and off-road applications. However, the necessity of reducing emissions requires to keep on studying new solutions for this kind of engine. Dual fuel combustion concept with methane has demonstrated to be effective in preserving the performance of the original engine and reducing soot, but issues related to the low flame speed forced researcher to find an alternative fuel at low impact of CO2. Hydrogen, thanks to its chemical and physical properties, can be a perfect candidate to ensure a good level of combustion efficiency; however, this is possible only with a proper management of the in-cylinder mixture ignition by means of a pilot injection, preventing uncontrolled autoignition events as well.
Technical Paper

Optical Diagnostics to Study Hydrogen/Diesel Combustion with EGR in a Single Cylinder Research Engine

2023-08-28
2023-24-0070
In order to reduce fuel consumption and polluting emissions from engines, alternative fuels such as hydrogen could play an important role towards carbon neutrality. Moreover, dual-fuel (DF) technology has the potential to offer significant improvements in carbon dioxide emissions for transportation and energy sectors. The dual fuel concept (natural gas/diesel or hydrogen/diesel) represents a possible solution to reduce emissions from diesel engines by using low-carbon or carbon-free gaseous fuels as an alternative fuel. Moreover, DF combustion is a possible retrofit solution to current diesel engines by installing a PFI injector in the intake manifold while diesel is injected directly into the cylinder to ignite the premixed mixture. In the present study, dual fuel operation has been investigated in a single cylinder research engine.
Journal Article

Hydrogen/Diesel Combustion Analysis in a Single Cylinder Research Engine

2022-09-16
2022-24-0012
The application of an alternative fuel such as hydrogen to internal combustion engines is proving to be an effective and flexible solution for reducing fuel consumption and polluting emissions from engines. An easy to use and immediate application solution is the dual fuel (DF) technology. It has the potential to offer significant improvements in carbon dioxide emissions from light compression ignition engines. The dual fuel concept (natural gas / diesel or hydrogen / diesel) represents a possible solution to reduce emissions from diesel engines by using low-carbon or carbon-free gaseous fuels as an alternative fuel. Moreover, DF combustion is a possible retrofit solution to current diesel engines by installing a PFI injector in the intake manifold while diesel is injected directly into the cylinder to ignite the premixed mixture. In the present study, dual fuel operation has been investigated in a single cylinder research engine.
Technical Paper

CFD Analysis of Different Methane/Hydrogen Blends in a CI Engine Operating in Dual Fuel Mode

2022-08-30
2022-01-1056
Nowadays, the stricter regulations in terms of emissions have limited the use of diesel engines on urban roads. On the contrary, for marine and off-road applications the diesel engine still represents the most feasible solution for work production. In the last decades, dual fuel operation with methane supply has been widely investigated. Starting from previous studies on a research engine, where diesel-methane dual fuel combustion has been deepened both experimentally and numerically with the aid of a CFD code, the authors implemented and tested a kinetic mechanism. It is obtained from the combination of the well-established GRIMECH 3.0 and a detailed scheme for a diesel surrogate oxidation. Moreover, the Autoignition-Induced Flame Propagation model, included in the ANSYS Forte® software, is applied because it can be considered the most appropriate model to describe dual fuel combustion.
Technical Paper

Modeling Study of the Battery Pack for the Electric Conversion of a Commercial Vehicle

2021-09-05
2021-24-0112
Many aspects of battery electric vehicles are very challenging from the engineering point of view in terms of safety, weight, range, and drivability. Commercial vehicle engines are often subjected to high loads even at low speeds and this can lead to an intense increment of the battery pack temperature and stress of the cooling system. For these reasons the optimal design of the battery pack and the relative cooling system is essential. The present study deals with the challenge of designing a battery pack that satisfies both the conditions of lowest weight and efficient temperature control. The trade-off between the battery pack size and the electrical stress on the cells is considered. The electric system has the aim to substitute a 3.0 liters compression ignition engine mainly for commercial vehicles.
Technical Paper

Combined CFD - Experimental Analysis of the In-Cylinder Combustion Phenomena in a Dual Fuel Optical Compression Ignition Engine

2021-09-05
2021-24-0012
Methane supply in diesel engines operating in dual fuel mode has demonstrated to be effective for the reduction of particulate matter and nitric oxides emissions from this type of engine. In particular, methane is injected into the intake manifold to form a premixed charge with air, while a reduced amount of diesel oil is still directly injected to ignite the mixture inside the cylinder. As a matter of fact, the liquid fuel burns following the usual diffusive combustion, so activating the gaseous fuel oxidation in a premixed flame. Clearly, the whole combustion process appears to be more complex to be described in a CFD simulation, mainly because it is not always possible to select in the 3-dimensional codes a different combustion model for each fuel and, also, because other issues arise from the interaction of the two fuels.
Technical Paper

Modeling of Soot Deposition and Active Regeneration in Wall-flow DPF and Experimental Validation

2020-09-15
2020-01-2180
Growing concerns about the emissions of internal combustion engines have forced the adoption of aftertreatment devices to reduce the adverse impact of diesel engines on health and environment. Diesel particulate filters are considered as an effective means to reduce the particle emissions and comply with the regulations. Research activity in this field focuses on filter configuration, materials and aging, on understanding the variation of soot layer properties during time, on defining of the optimal strategy of DPF management for on-board control applications. A model was implemented in order to simulate the filtration and regeneration processes of a wall-flow particulate filter, taking into account the emission characteristic of the engine, whose architecture and operating conditions deeply affect the size distribution of soot particles.
Journal Article

Infrared/Visible Optical Diagnostics of RCCI Combustion with Dieseline in a Compression Ignition Engine

2020-04-14
2020-01-0557
Compression ignition engines are widely used for transport and energy generation due to their high efficiency and low fuel consumption. To minimize the environmental impact of this technology, the pollutant emissions levels at the exhaust are strictly regulated. To reduce the after-treatment needs, alternative strategies as the low temperature combustion (LTC) concepts are being investigated recently. The reactivity controlled compression ignition (RCCI) uses two fuels (direct- and port- injected) with different reactivity to control the in-cylinder mixture reactivity by adjusting the proportion of both fuels. In spite of the proportion of the port-injected fuel is typically higher than the direct-injected one, the characteristics of the latter play a main role on the combustion process. Use of gasoline for direct injection is attractive to retard the start of combustion and to improve the air-fuel mixing process.
Technical Paper

Chemical and Physical Characteristics of Organic Particulate Matter from Exhaust After-Treatment System of Euro 6 Diesel Engine Operating at Full Load

2019-09-09
2019-24-0053
The current legislation does not take into account the limitation of sub 23 nm particles from engine. Nevertheless, the Common Rail Diesel engine emits a large number of nanoparticle, solid and volatiles, that are very dangerous for human health. In this contest, the challenge of the “dieper EU project” is to apply advanced technologies for exhaust after-treatment to existing diesel engines and to optimize the characteristics of a new generation of engines with regards to emissions, fuel consumption and drivability. Aim of the present paper is to provide useful information for the development of the after-treatment system that will have to fulfill Euro6 further steps. In order to characterize the chemical and physical nature of Particulate Matter emitted from Euro 6b Medium Duty diesel engine, the pollutants were collected and analyzed: from engine-out, downstream of the particulate filter (DPF), and at the exit of a selective catalytic reactor (SCR).
Technical Paper

Temperature Measurements of the Piston Optical Window in a Research Compression Ignition Engine to Set-Up a 1d Model of Heat Transfer in Transient Conditions

2019-09-09
2019-24-0182
The analysis of heat losses in internal combustion engines (ICEs) is fundamental to evaluate and to improve engine efficiency. Detailed and reliable heat transfer models are required for more complex 1d-3d combustion models. At the same time, the thermal status of engine components, like pistons, is needed for an efficient design. Measurements of piston temperature during ICEs operation represent an important and challenging result to get for the aforementioned purposes. In the present work, temperature measurements collected at different engine speeds and loads, both in motored and fired modes, have been performed and used to set-up a theoretical correlation and 1d model of heat transfer through the optical window of the piston. The in-cylinder gas and external ambient temperature, together with the thermodynamic and material properties are given. The model has been first calibrated in some selected operating conditions and then validated in the remaining.
Technical Paper

1D Modeling of Alternative Fuels Spray in a Compression Ignition Engine Using Injection Rate Shaping Strategy

2019-09-09
2019-24-0132
The Injection Rate Shaping consists in a novel injection strategy to control air-fuel mixing quality via a suitable variation of injection timing that affects the injection rate profile. This strategy has already provided to be useful to increase combustion efficiency and reduce pollutant emissions in the modern compression ignition engines fed with fossil Diesel fuel. But nowadays, the ever more rigorous emission targets are enhancing a search for alternative fuels and/or new blends to replace conventional ones, leading, in turn, a change in the air-fuel mixture formation. In this work, a 1D model of spray injection aims to investigate the combined effects of both Injection Rate Shaping and alternative fuels on the air-fuel mixture formation in a compression ignition engine. In a first step, a ready-made model for conventional injection strategies has been set up for the Injection Rate Shaping.
Technical Paper

Assessment of the New Features of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector by Means of Engine Performance Characterization and Spray Visualization

2018-09-10
2018-01-1697
The application of more efficient compression ignition combustion concepts requires advancement in terms of fuel injection technologies. The injector nozzle is the most critical component of the whole injection system for its impact on the combustion process. It is characterized by the number of holes, diameter, internal shape, and opening angle. The reduction of the nozzle hole diameter seems the simplest way to promote the atomization process but the number of holes must be increased to keep constant the injected fuel mass. This logic has been applied to the development of a new generation of injectors. First, the tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate. The vertical movement of the needle generates an annulus area for the fuel delivery on 360 degrees, so controlling the atomization as a function of the vertical plate position.
Technical Paper

Temperature Measurements of the Piston Optical Window in a Research Compression Ignition Engine via Thermography and Templugs

2018-04-03
2018-01-0083
Internal combustion engines are characterized by high pressure and thermal loads on pistons and in cylinders. The heat generated by the combustion process is dissipated by means of water and oil cooling systems. For the best design and optimization of the engine components it is necessary to know the components temperature in order to estimate the thermal flows. The purpose of this work is to measure the piston sapphire window temperature in a research optically accessible engine by combining two different techniques: measurements with templugs and with thermography. The method is very simple and can provide a reliable value of temperature within a small interval. It fits well for applications inside the engine because of its low technical level requirements. It consists of application of temperature sensitive stickers on the target component that makes it a very robust method, not affected by piston movement.
Technical Paper

CFD Analysis of the Combustion Process in Dual-Fuel Diesel Engine

2018-04-03
2018-01-0257
Dual-fuel technology has the potential to offer significant improvements in the emissions of carbon dioxide from light-duty compression ignition engines. The dual-fuel (diesel/natural gas) concept represents a possible solution to reduce emissions from diesel engines by using natural gas (methane) as an alternative fuel. Methane was injected in the intake manifold while the diesel oil was injected directly into the engine. The present work describes the results of a numerical study on combustion process of a common rail diesel engine supplied with natural gas and diesel oil. In particular, the aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution. The study of dual-fuel engines that is carried out in this paper aims at the evaluation of the CFD potential, by a 3-dimensional code, to predict the main features of this technology.
Technical Paper

Analysis of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector Performance in Optical and Metal Research Engines

2017-09-04
2017-24-0073
Technologies for direct injection of fuel in compression ignition engines are in continuous development. One of the most investigated components of this system is the injector; in particular, main attention is given to the nozzle characteristics as hole diameter, number, internal shape, and opening angle. The reduction of nozzle hole diameter seems the simplest way to increase the average fuel velocity and to promote the atomization process. On the other hand, the number of holes must increase to keep the desired mass flow rate. On this basis, a new logic has been applied for the development of the next generation of injectors. The tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate that moves vertically. The plate motion allows to obtain an annulus area for the delivery of the fuel on 360 degrees; while the plate lift permits to vary the atomization level of the spray.
Journal Article

Real Time Prediction of Particle Sizing at the Exhaust of a Diesel Engine by Using a Neural Network Model

2017-09-04
2017-24-0051
In order to meet the increasingly strict emission regulations, several solutions for NOx and PM emissions reduction have been studied. Exhaust gas recirculation (EGR) technology has become one of the more used methods to accomplish the NOx emissions reduction. However, actual control strategies do not consider, in the definition of optimal EGR, its effect on particle size and density. These latter have a great importance both for the optimal functioning of after-treatment systems, but also for the adverse effects that small particles have on human health. Epidemiological studies, in fact, highlighted that the toxicity of particulate particles increases as the particle size decreases. The aim of this paper is to present a Neural Network model able to provide real time information about the characteristics of exhaust particles emitted by a Diesel engine.
Technical Paper

Performance, Gaseous and Particle Emissions of a Small Compression Ignition Engine Operating in Diesel/Methane Dual Fuel Mode

2016-04-05
2016-01-0771
This paper deals with the combustion behavior and exhaust emissions of a small compression ignition engine modified to operate in diesel/methane dual fuel mode. The engine is a three-cylinder, 1028 cm3 of displacement, equipped with a common rail injection system. The engine is provided with the production diesel oxidation catalyst. Intake manifold was modified in order to set up a gas injector managed by an external control unit. Experiments were carried out at different engine speeds and loads. For each engine operating condition, the majority of the total load was supplied by methane while a small percentage of the load was realized using diesel fuel; the latter was necessary to ignite the premixed charge of gaseous fuel. Thermodynamical analysis of the combustion phase was performed by in-cylinder pressure signal. Gas emissions and particulate matter were measured at the exhaust by commercial instruments.
Technical Paper

Characterization of Combustion and Emissions of a Propane-Diesel Blend in a Research Diesel Engine

2016-04-05
2016-01-0810
The interest of the vehicle producers in fulfillment emission legislations without adopting after treatment systems is driving to the use of non-conventional energy sources for modern engines. A previous test campaign dealing with the use of blends of diesel and propane in a CI engine has pointed out the potential of this non-conventional fuel for diesel engines. The soft adaptation of the common rail injection system and the potential benefits, in terms of engine performances and pollutant emissions, encourage the use of propane-diesel blends if an optimization of the injection strategies is performed. In this work, the performances of a propane-diesel mixture in a research diesel engine have been investigated. The injection strategies of Euro 5 calibration have been used as reference for the development of optimized strategies. The aim of the optimization process was to ensure the same engine power output and reduce the pollutant emissions.
X