Refine Your Search


Search Results

Viewing 1 to 14 of 14
Technical Paper

Application of an Integrated CFD Methodology for the Aerodynamic and Thermal Management Design of a Hi-Performance Motorcycle

Though CFD methods have become very popular and widespread tools in the early as well as more advanced automotive design stages, they are still not so common in the motorcycle industry branch. The present work aims at the development of a comprehensive simulation environment, based on the open-source finite volume toolbox OpenFOAM®, for the aerodynamic and thermal fluxes optimization of a full motorcycle-and-rider geometry. The paper is divided in two parts: in the first one, the OpenFOAM® code is evaluated for a cold flow aerodynamic analysis, using a slightly simplified version of the Aprilia RSV4 motorbike geometry; in the second one, a mixed reduced scale-full scale methodology is proposed for the simultaneous assessment of aerodynamic forces and heat transfer performances of the engine cooling system. Results have been compared against other well established commercial CFD packages and, where available, with experimental measurements.
Technical Paper

On the Steady and Unsteady Turbulence Modeling in Ground Vehicle Aerodynamic Design and Optimization

Computational Fluid Dynamics is nowadays largely employed as an effective optimization tool in the automotive industry, especially for what concerns aerodynamic design driven by critical factors such as the engine cooling system optimization and the reduction of drag forces, both limited by continuously changing stylistic constraints. The Ahmed reference model is a generic car-type bluff body with a slant back, which is frequently used as a benchmark test case by industrial as well as academic researchers, in order to investigate the performances of different turbulence modeling approaches. In spite of its relatively simple geometry, the Ahmed model possesses many of the typical aerodynamic features of a modern passenger car - a bluff body with separated boundary layers, recirculating flows and complex three-dimensional wake structures.
Technical Paper

Parametric Study of Physical Requirements for Optimization of the EGR-rate and the Spray Formation for Minimum Emissions Production Over a Broad Range of Load/Speed Conditions

The present paper describes a study, which can enable a small displacement (1.3 liter) turbocharged European CR-diesel engine to tolerate an important increase in EGR-level. The analysis is performed by use of a 3D virtual numerical engine model, which isolates the main parameters that must be optimized within the perimeter of the combustion chamber. The paper gives a short introduction to the physical background for NOx and soot-formation as well as a recall of the main issues related to the simulation models used in the virtual engine simulation. The analysis is performed in a 9 points load/speed test matrix. Several EGR-rates are studied as well as the impact of a precise temperature control of the exhaust gas re-introduced in the intake manifold. The paper concludes by an analysis of the cumulated impact on the EGR-level tolerated by the engine after the introduction of the suggested optimization measures.
Technical Paper

Optimization by CFD Simulation of Spray Formation Parameters to Adapt Direct Injection High-Pressure Fuel Injectors to High-Speed SI-Engines

The main objective of the paper is to describe the optimization work performed to adjust direct injection (DI)-technology to SI-engines running at high (8000 to 10000 rpm.) and extremely high speeds (more than 18000 rpm). In the first category are located a certain number of small and middle displacement two-stroke series produced engines. In the second category are the typical high power racing engines used for competitions like the formula 1. The first part of the paper describes the particular requirements that an in-cylinder fuelling and mixture preparation will have to fulfill with the extremely short period available for introduction and vaporization of the fuel. The paper continues with a description of the different spray shapes, spray penetration velocities and atomization capabilities, which are optimal for the different combustion chamber architectures.
Technical Paper

Direct Injection for Future SI-Engines - Stand Alone Combustion Layout or Integrated Part of Multi-Function Fuel/Air Management Approach?

In the future generation of low consumption SI-engine layouts, it has become necessary to reduce costs as well as the complexity level and, increase the system reliability by the latter. To avoid driving the GDI-system in the critical, very lean stratified operation mode without losing the fuel consumption benefit, a solution is suggested, which combines a fully variable valve control system with a low level, robust GDI combustion layout. The first part of the present paper presents the latest development in the field of high precision multi-hole GDI injector spray nozzles. The basic aspects of mixture preparation with multi-hole gasoline atomizers are highlighted and their spray behavior compared to that of the current swirl atomizer nozzle. The second part of the paper presents primary optimization of a largely homogeneous GDI combustion layout combined with a fully variable valve timing control system including complete cylinder de-activation.
Technical Paper

Flow Characterization of a High Performance S.I. Engine Intake System - Part 2: Numerical Analysis

In this paper a numerical analysis is carried out of the flow characteristics in the intake system of a high performance engine. To this aim, the experimental flow bench results - obtained in tests performed on a Ducati Corse 4 valves racing engine head and presented in the parallel work [1] - are compared with the numerical ones. In [1] an experimental analysis was performed to evaluate the influence, on the flow characteristics in the intake system of a high performance 4 stroke - 4 valve internal combustion engine Notwithstanding the macroscopic meaning of the measured global coefficients Cd (Discharge Coefficient) and Nt (Tumble Number), the comparative analysis of their respective trends allowed some hypotheses to be drawn on the flow development internally to intake system ducts. In order to confirm the conclusions drawn in [1] and to reach a deeper insight in the flow characteristics, numerical simulations were performed.
Technical Paper

Combustion and Spray Simulation of a DI Turbocharged Diesel Engine

The recent innovations on automotive Diesel engines require significant research efforts. The new generation of fully electronically controlled injection systems have opened new ways to reduce emissions and improve the efficiency of the engine. The free mapping of injection law together with the enhanced injection pressures favor, in fact, the optimization of mixture formation. In this field, the 3D simulation is playing a substantial role to support the design of combustion chamber. This paper presents a computational model to simulate the multi-injection process, the mixture formation and the combustion of DI diesel engines with high-pressure injection systems. The main code is a modified version of the KIVA 3V and the modifications presented in this work are a high pressure break up model and a multi component evaporation model. The code has been validated through experimental data on a 4-cylinder, 1910 cc, DI turbocharged Diesel engine (Fiat 1.9 JTD).
Technical Paper

Experimental Validation of a GDI Spray Model

A computational model and an experimental analysis have been performed to study the atomisation processes of hollow cone fuel sprays from a high pressure swirl injector for gasoline direct injection (GDI) engines. The objective has been to obtain reliable simulations and better understood structure and evolution of the spray and its interaction with air the flow field. The 3D computations are based on the KIVA 3 code in which basic spray sub models have been modified to simulate break-up phenomena and evaporation process. Spray characteristics have been measured using a system, able to gather and to process spray images, including a CCD camera, a frame grabber and a pulsed sheet obtained by the second harmonic of Nd-YAG laser (wavelength 532 nm, width 12 ns, thickness 80 μm). The readout system has been triggered by a TTL signal synchronized with the start of injection. A digital image processing software has been used to analyse the collected pictures.
Technical Paper

Enhanced Mixture Preparation Approach for Lean Stratified SI-Combustion by a Combined Use of GDI and Electronically Controlled Valve-Timing

The first part of the paper gives an overview of the current status in fuel consumption gain of the GDI-vehicles previously launched on the European market. In order to increase the potential for a further gain in specific fuel consumption the behaviour of 3 different combustion chamber layouts are studied. The chamber layouts are aimed to adapt as well as possible to the particular requirements for application to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application that shows the different steps of a structured optimisation methodology for a 1.2 litre, small bore 4-cylinder engine. The applications of an air-motion-guided and a wall-guided layout with a mechanically actuated valve train to the same combustion chamber are discussed. The potential of the air-motion-guided concept is enhanced through the introduction of an electromagnetic fully variable valve train.
Technical Paper

Experimental and Numerical Approach to Injection and Ignition Optimization of Lean GDI-Combustion Behavior

The first part of the paper gives an overview of the current development status of the GDI system layout for the middle displacement engine, typically 2 liter, using the stoichiometric or weak lean concept. Hereafter are discussed the particular requirements for the transition to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application of the different steps of the optimization methodology for a 1.2 liter, small bore 4 cylinder engine from its original base line MPI version towards the lean stratified operation mode. The latest changes in the combustion model, used in the numerical simulation software applied to the combustion chamber design, are discussed and comparison made with the previous model. The redesign of the combustion chamber geometry, the proper choice of injector atomizer type and location and the use of two-stage injection and multi-spark strategies are discussed in detail.
Technical Paper

Improvements of GDI-Injector Optimization Tools for Enhanced SI-Engine Combustion Chamber Layout

The suggestions for upcoming Euro 2000 clean air act puts an increasing legislative pressure for lower specific fuel consumption in order to reduce the emission of CO2 and thereby decrease the impact of the “green house” effect. One of the possible suggestions to meet these requirements for SI-engines is the gasoline direct injected (GDI) power unit. One of the key points of the success of a layout of a GDI system is the optimization of the fuel injector and combustion chamber charge formation parameters. A brief description of the basic GDI-system used during the study is given. Hereafter are outlined the computational and experimental optimization tools which have been used to produce, on a reasonable industrial time scale, the main indications to optimize the design of a given injector/chamber configuration. The paper discusses in detail the results produced by the latest enhancements introduced into the 3D multi-phase computational approach, NCF-3D.
Technical Paper

Mass Transfer Improvements in Catalytic Converter Channels: An Hybrid BGK-Finite Volume Numerical Simulation Method

For compliance with future LEV/ULEV emission standards in United States and Euro 2000/Euro 2005 standards in European Community, catalytic converter performance has to be remarkably improved. The development of simulation codes allows to investigate a high range of possible exhaust system configurations and engine operating parameters. In the present study an hybrid Lattice BGK-finite volume technique will be described, able to determine the mass transfer rates of the chemical species to the catalyzed wall of the monolith channels. The BGK code solves the fluid motion governing equations in a reduced form obtained by discretizing the continuum in a fixed number of particles. Each of them will be moved by a set of discrete velocities and collide with the neighbour particles according to a fixed pattern of particle-interaction.
Technical Paper

A Simulation Model for a High Pressure Injection Systems

Pollutant emissions from D.I. Diesel engines strongly depend on injection system characteristics and mainly on injection pressure and timing. In the latest years some solutions have been proposed based on very high fuel pressure values (up to 150 MPa). Among them, the so called “Common rail” system configuration, being able to electronically control needle lift and injection pressure, seems to be particularly promising. Much experimental and theoretical work has been done to improve system performance for automotive applications. With the aim of investigating the influence of some details of geometrical configuration on the injector operating mode, a mathematical model able to describe the pressure-time history in any section of the delivery pipe and the fuel injection rate through the nozzle has been developed, based on a semi-implicit finite volumes approach. The computed results have been compared with experimental data provided by the Institut Français du Pétrole.
Technical Paper

Direct Fuel Injection - A Study of Injector Requirements for Different Mixture Preparation Concepts

The first part of the paper outlines the main potential advantages of the direct fuel injection concept and describes the overall layout of a system in which the keystones are a piston rotary fuel delivery pump with integrated pressure regulation and electromechanical fast responding fuel injectors. Three different nozzle designs are discussed, a divergent pintle solid cone, a pintle hollow cone swirl layout and a closed cap multijet design. In the second part of the paper the used experimental high pressure dynamic test equipment is discussed. Then the results obtained by the use of phase illuminated visualisation techniques and phase Doppler analysis as well as by a 3D CFD approach are presented. The paper concludes by relating the spray patterns and the associated droplet penetration velocities, produced by the different nozzle types, to the combustion chamber layout and to the possible manufacturing precision requirements for each nozzle type.