Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

On the Steady and Unsteady Turbulence Modeling in Ground Vehicle Aerodynamic Design and Optimization

2011-09-11
2011-24-0163
Computational Fluid Dynamics is nowadays largely employed as an effective optimization tool in the automotive industry, especially for what concerns aerodynamic design driven by critical factors such as the engine cooling system optimization and the reduction of drag forces, both limited by continuously changing stylistic constraints. The Ahmed reference model is a generic car-type bluff body with a slant back, which is frequently used as a benchmark test case by industrial as well as academic researchers, in order to investigate the performances of different turbulence modeling approaches. In spite of its relatively simple geometry, the Ahmed model possesses many of the typical aerodynamic features of a modern passenger car - a bluff body with separated boundary layers, recirculating flows and complex three-dimensional wake structures.
Journal Article

Modeling liquid break-up through a kinetic approach

2009-09-13
2009-24-0023
Liquid atomisation is an important technical field for a wide range of engineering and industrial applications, particularly in the field of internal combustion engines. In these engines, in fact, the amount of pollutants at the engine-out interface is directly related to the quality of the combustion process, which is in turn determined by the quality of the air-fuel mixture preparation in Direct Injection (DI) engines. As a consequence numerical-experimental research is crucial to their development. Despite the significant amount of research that has been carried out on DI engines simulation, breakup modelling is still a challenge. In this paper we present a new numerical model for multiphase flows that could be particularly suited for liquid jet and droplet breakup simulation. The model is based on a Lattice Boltzmann (LB) solver coupled to a higher order finite difference treatment of the kinetic forces arising from non-ideal interactions (potential energy).
Technical Paper

Parametric Study of Physical Requirements for Optimization of the EGR-rate and the Spray Formation for Minimum Emissions Production Over a Broad Range of Load/Speed Conditions

2006-04-03
2006-01-1120
The present paper describes a study, which can enable a small displacement (1.3 liter) turbocharged European CR-diesel engine to tolerate an important increase in EGR-level. The analysis is performed by use of a 3D virtual numerical engine model, which isolates the main parameters that must be optimized within the perimeter of the combustion chamber. The paper gives a short introduction to the physical background for NOx and soot-formation as well as a recall of the main issues related to the simulation models used in the virtual engine simulation. The analysis is performed in a 9 points load/speed test matrix. Several EGR-rates are studied as well as the impact of a precise temperature control of the exhaust gas re-introduced in the intake manifold. The paper concludes by an analysis of the cumulated impact on the EGR-level tolerated by the engine after the introduction of the suggested optimization measures.
Technical Paper

Study of the Influence of the Injection System in a Multi-Dimensional Spray Simulation

2005-09-11
2005-24-088
The introduction of the high-pressure fully electronic-controlled injection systems has opened a number of new possibilities to optimize diesel engine performance and to reduce pollutant emissions. However greater research efforts are required to meet future European emission legislation. The control of the combustion process, which determines to a large extent the amount of pollutant emissions, requires primarily an understanding of its physics and chemistry as well as the capability to modify one or more of the interdependent process parameters in a given direction. Since many parameters have to be considered, a combined experimental-numerical approach is required.
Technical Paper

Study of the Impact on the Spray Shape Stability and the Combustion Process of Supply Pressure Fluctuations in CR-Diesel Injectors

2004-03-08
2004-01-0023
The paper presents a study of the influence of fuel pressure supply fluctuations on the upstream side of the fuel injector atomizer. The study is performed over a wide range of pressures (70 to 130 Mpa) with two different common-rail (CR) high-pressure fuel injectors. The common atomizer is a VCO-type equipped with conically shaped atomizer bores. With the injector tip (nozzle) mounted in a counter-pressure vessel the pressure fluctuations in the fuel-rail and in the injector body are recorded simultaneously with stroboscopic Schlieren-visualization of the time-resolved spray behavior. It is demonstrated that not only the instantaneous mass flow is affected. As a function of rail-pressure, pulse-width and injection strategy the pressure fluctuations change the spray hard-core structure and its break-up behavior.
Technical Paper

Combustion and Spray Simulation of a DI Turbocharged Diesel Engine

2002-10-21
2002-01-2776
The recent innovations on automotive Diesel engines require significant research efforts. The new generation of fully electronically controlled injection systems have opened new ways to reduce emissions and improve the efficiency of the engine. The free mapping of injection law together with the enhanced injection pressures favor, in fact, the optimization of mixture formation. In this field, the 3D simulation is playing a substantial role to support the design of combustion chamber. This paper presents a computational model to simulate the multi-injection process, the mixture formation and the combustion of DI diesel engines with high-pressure injection systems. The main code is a modified version of the KIVA 3V and the modifications presented in this work are a high pressure break up model and a multi component evaporation model. The code has been validated through experimental data on a 4-cylinder, 1910 cc, DI turbocharged Diesel engine (Fiat 1.9 JTD).
Technical Paper

Study of the Benefits and Drawbacks of a Substantial Increase of Rail-Pressure in GDI-Injector Assemblies

2002-03-04
2002-01-1132
In the present paper are examined the consequences of a substantial rise in the injection pressure for Gasoline Direct Injection (GDI) injector assemblies. The paper presents a comparative study of the spray behavior of two different injector nozzle layouts submitted to current 10 Mpa rail-pressure as well as to a 30 Mpa injection pressure. To evaluate the differences in the fundamental physical spray parameters are used several specially developed optical visualization techniques, which enable phase-Doppler, PIV, Laser-sheet and high-speed recordings of dense high pressure fuel sprays. A recently developed injector actuator and the necessary modifications to existing high-pressure pumps to reach a 30 MPa pressure level in the fuel system are presented. The change in basic spray parameters (time-resolved droplet distribution and spray momentum) caused by the rail-pressure rise is examined.
Technical Paper

Experimental Validation of a GDI Spray Model

2002-03-04
2002-01-1137
A computational model and an experimental analysis have been performed to study the atomisation processes of hollow cone fuel sprays from a high pressure swirl injector for gasoline direct injection (GDI) engines. The objective has been to obtain reliable simulations and better understood structure and evolution of the spray and its interaction with air the flow field. The 3D computations are based on the KIVA 3 code in which basic spray sub models have been modified to simulate break-up phenomena and evaporation process. Spray characteristics have been measured using a system, able to gather and to process spray images, including a CCD camera, a frame grabber and a pulsed sheet obtained by the second harmonic of Nd-YAG laser (wavelength 532 nm, width 12 ns, thickness 80 μm). The readout system has been triggered by a TTL signal synchronized with the start of injection. A digital image processing software has been used to analyse the collected pictures.
Technical Paper

Developments in the Use of Multi-Purpose Numerical Simulation Tools to Optimize Combustion Control Parameters for the 2nd Generation of Lean Burn Stratified GDI Engines

2001-03-05
2001-01-0967
The first part of the paper gives an overview of the current results obtained with the first-generation of GDI-powered vehicles launched on the European market. In view of the rather limited success in fuel consumption gain the second-generation of very lean stratified layouts has begun, but this process requires the development and application of new high-level analysis tools. A possible high performance approach is the multi-purpose use of 3-D numerical simulation both in the development and the engine control strategy calibration phases. The development of a small 1.6 liter lean stratified engine project was chosen to demonstrate the dual application capability of the NCF-3D simulation tool. The paper continues with a description of the engine application frame, the basic features of the NCF-3D simulation tool and the latest enhancements made to combustion and fuel composition models within the software frame.
Technical Paper

Atomization of High-Pressure Diesel Spray: Experimental Validation of a New Breakup Model

2001-03-05
2001-01-1070
A hybrid model for the atomization of Diesel sprays was developed [1]. The model was added to the KIVA code to better simulate spray evolution. Different implementation for low-medium and high injection pressure sprays are performed. It has already been validated for the low-pressure case [1,2] and in this work it was tested for high injection pressure systems, in a vessel at ambient conditions. It distinguishes between jet primary breakup and droplet secondary breakup. For the latter distinct models are used, as the droplet Weber number changes in the various regimes, in order to take into account the effects of the different relevant forces. For high pressure Diesel spray the effects of jet turbulence, cavitation and nozzle flow on liquid core primary breakup must be considered. Due to the high droplet velocity the catastrophic secondary breakup regime may occur.
Technical Paper

Enhanced Mixture Preparation Approach for Lean Stratified SI-Combustion by a Combined Use of GDI and Electronically Controlled Valve-Timing

2000-03-06
2000-01-0532
The first part of the paper gives an overview of the current status in fuel consumption gain of the GDI-vehicles previously launched on the European market. In order to increase the potential for a further gain in specific fuel consumption the behaviour of 3 different combustion chamber layouts are studied. The chamber layouts are aimed to adapt as well as possible to the particular requirements for application to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application that shows the different steps of a structured optimisation methodology for a 1.2 litre, small bore 4-cylinder engine. The applications of an air-motion-guided and a wall-guided layout with a mechanically actuated valve train to the same combustion chamber are discussed. The potential of the air-motion-guided concept is enhanced through the introduction of an electromagnetic fully variable valve train.
Technical Paper

Experimental and Numerical Approach to Injection and Ignition Optimization of Lean GDI-Combustion Behavior

1999-03-01
1999-01-0173
The first part of the paper gives an overview of the current development status of the GDI system layout for the middle displacement engine, typically 2 liter, using the stoichiometric or weak lean concept. Hereafter are discussed the particular requirements for the transition to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application of the different steps of the optimization methodology for a 1.2 liter, small bore 4 cylinder engine from its original base line MPI version towards the lean stratified operation mode. The latest changes in the combustion model, used in the numerical simulation software applied to the combustion chamber design, are discussed and comparison made with the previous model. The redesign of the combustion chamber geometry, the proper choice of injector atomizer type and location and the use of two-stage injection and multi-spark strategies are discussed in detail.
Technical Paper

Improvements of GDI-Injector Optimization Tools for Enhanced SI-Engine Combustion Chamber Layout

1998-02-23
980494
The suggestions for upcoming Euro 2000 clean air act puts an increasing legislative pressure for lower specific fuel consumption in order to reduce the emission of CO2 and thereby decrease the impact of the “green house” effect. One of the possible suggestions to meet these requirements for SI-engines is the gasoline direct injected (GDI) power unit. One of the key points of the success of a layout of a GDI system is the optimization of the fuel injector and combustion chamber charge formation parameters. A brief description of the basic GDI-system used during the study is given. Hereafter are outlined the computational and experimental optimization tools which have been used to produce, on a reasonable industrial time scale, the main indications to optimize the design of a given injector/chamber configuration. The paper discusses in detail the results produced by the latest enhancements introduced into the 3D multi-phase computational approach, NCF-3D.
Technical Paper

Mass Transfer Improvements in Catalytic Converter Channels: An Hybrid BGK-Finite Volume Numerical Simulation Method

1997-10-01
972907
For compliance with future LEV/ULEV emission standards in United States and Euro 2000/Euro 2005 standards in European Community, catalytic converter performance has to be remarkably improved. The development of simulation codes allows to investigate a high range of possible exhaust system configurations and engine operating parameters. In the present study an hybrid Lattice BGK-finite volume technique will be described, able to determine the mass transfer rates of the chemical species to the catalyzed wall of the monolith channels. The BGK code solves the fluid motion governing equations in a reduced form obtained by discretizing the continuum in a fixed number of particles. Each of them will be moved by a set of discrete velocities and collide with the neighbour particles according to a fixed pattern of particle-interaction.
Technical Paper

A Simulation Model for a High Pressure Injection Systems

1997-05-01
971595
Pollutant emissions from D.I. Diesel engines strongly depend on injection system characteristics and mainly on injection pressure and timing. In the latest years some solutions have been proposed based on very high fuel pressure values (up to 150 MPa). Among them, the so called “Common rail” system configuration, being able to electronically control needle lift and injection pressure, seems to be particularly promising. Much experimental and theoretical work has been done to improve system performance for automotive applications. With the aim of investigating the influence of some details of geometrical configuration on the injector operating mode, a mathematical model able to describe the pressure-time history in any section of the delivery pipe and the fuel injection rate through the nozzle has been developed, based on a semi-implicit finite volumes approach. The computed results have been compared with experimental data provided by the Institut Français du Pétrole.
Technical Paper

Optimization of the Performance of Two-Stroke Spark-Ignition Engines Using a Capacitor in the Exhaust Manifold

1989-09-01
891807
The performance of a small cross-scavenged two stroke spark ingition engines have been analysed by means of a displacement-mixing model for the intake gases, a two-zones combustion model, and one-dimensional numerical technique for the gas flow in the exhaust system. Numerical studies have shown that two stroke engine performance can be optimized by using a resonant chamber connected by means of a valve to the exhaust manifold. The configuration of the exhaust system C the resonant chamber's volume, the geometry of the pipe) may be determined as function of the required engine applications by the implemented code.
X