Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

A General 3D Model to Analyze Particle Transport Into a Partial-Flow-Particulate-Filter

2010-04-12
2010-01-0881
Emission control efficiency and limited fuel consumption penalty and are the main design factors driving the development of engine-after-treatment exhaust systems according to both ACEA/DOE targets and continental regulations. The particulate-filter is certainly a critical technology to this aim as usually presents very high pm reduction efficiencies (even more than 90% on a mass basis depending on soot loading) leading however to a back pressure increase and eventually to an appreciable fuel consumption penalty. Nevertheless, it is in general discussion that health hazard related to particulate depends primarily on total number of emitted particles rather than on mass. The partial-flow-filter has been recently developed presenting lower reduction efficiencies on a mass basis but also a reduced penalty on fuel consumption.
Technical Paper

An Experimental-Numerical Approach to Reduce Emissions of a Dual Fuel Diesel-Natural Gas Engine

2009-09-13
2009-24-0099
Conversion from diesel to dual fuel (diesel and natural gas) operation may represent an attractive retrofit technique to get a better PM-NOx trade-off in a diesel engine, with no major modifications of the original design. In the proposed paper, an Euro 2 heavy duty diesel engine, converted for dual fuelling, has been studied and tested to reduce pollutant emissions. Throttled stoichiometric with EGR and lean burn technologies have been selected as control strategies. A mixed experimental-numerical approach has been utilized to analyze the engine behavior by varying key operating conditions such as throttling, natural gas/diesel oil percentage and EGR. The model, based on a 3D approach, has been used mainly to understand the evolution of the distribution of the most important parameters in the combustion chamber.
Technical Paper

Experimental-Numerical Analysis of Mass Transfer in Standard and Longitudinal Structured (LS) Substrates

2009-04-20
2009-01-1270
The design of compact and efficient Diesel Oxidation Catalysts (DOC) is primarily important to comply with emission regulations not increasing engine fuel consumption at the same time. To design DOCs, Sherwood number correlations are typically used to calculate mass transfer by varying operating conditions in terms of catalyst volume, active area and mass flow rate. To that aim, Sherwood number trend over channel length has been extensively studied during last decades. However, Sherwood number correlations are highly dependent on channel geometry, and on the possible presence of special structures (such as blades, fins or bumps). These modifications, which characterize the latest developments in substrate technology, allow to improve mass transfer performance and require a special characterization.
Technical Paper

Influence of Washcoat Distribution on the Performance of Diesel Oxidation Catalysts

2007-10-29
2007-01-4007
The assessment of tighter and tighter emission targets, and the increase of efficiency of Diesel engines is pushing towards the need of oxidation catalysts capable of high conversion performance at very low temperatures. These capabilities can be achieved only by the adoption of very high noble metal loadings (up to 140 g/ft3), which lead to very high costs. Washcoat distribution may play a key role in this context. In this paper the influence of washcoat distribution on light-off behaviour of a Diesel Oxidation Catalyst has been then investigated by means of a 3D numerical model. The model is capable of representing the coupling among flow, washcoat diffusion and detailed surface chemistry. Results state that the adoption of an optimized washcoat distribution may roughly lead to cost-savings of the order 30-40% in terms of noble metal loading.
Technical Paper

Experiments and Multi-Dimensional Simulation of Dual-Fuel Diesel/Natural Gas Engines

2007-09-16
2007-24-0124
Dual-fuel engines, based on the use of natural gas (NG) as the main fuel in internal combustion engines (ICE) and using diesel injection as the ignition source instead of the spark plug, are one of the possible ways to reduce the trade off PM-NOX problem of traditional diesel engines. The high octane number (NOR) of NG allows to easily covert existing diesel engine, without varying the original compression ratio, with great advantages in terms of costs. The only modifications concern with the introduction of feeding system for NG and the reduction of diesel quantity injected into the combustion chamber, by acting on injection pump control. For high degrees of substitution, diesel oil can be considered only as the ignition source for the fresh air/NG mixture, with consequent beneficial effects on PM emissions. The real drawback regarding dual-fuel engines is the wide increase in HC and CO emissions and efficiency worsening, especially under part-load conditions.
Technical Paper

A Mixed Numerical-Experimental Analysis for the Development of a Partially Stratified Compressed Natural Gas Engine

2005-09-11
2005-24-029
This paper discusses a partially stratified technology for engines running lean on natural gas. A single cylinder research engine has been modified to enable direct injection of a small quantity of natural gas through the spark plug to the region of the electrodes, independent of the overall lean homogeneous charge. Thus, a Partially Stratified Charge (PSC) is formed within the chamber allowing significant extension of the lean limit of combustion. Although PSC has been shown to reduce NOX emissions and improve combustion efficiency, high hydrocarbon emissions have been observed and this was thought to be due to poor mixing of the injected fuel air charge. The mixed experimental-numerical activity described herein, carried out by the Universities of British Columbia of Vancouver and Roma Tor Vergata, is aimed at improving the micro-direct injection PSC process.
Technical Paper

Numerical and Experimental Analysis of the Behaviour of a Heavy-Duty Diesel Engine Converted to Dual-Fuel Operations

2005-09-11
2005-24-032
One of the possible solutions in order to reduce NOX and PM emissions and fuel specific consumption in a diesel engine is to substitute a part of the diesel oil with a gaseous fuel. Natural gas, due to the high octane number, allows such substitution without great modifications to the original engine, just introducing the gas feeding system. The utilization of natural gas (usually referred as “alternative fuel”) instead of oil is an important advantage of such technology in terms of energy sources. In this paper the conversion of the IVECO 8360.46R engine, for bus applications, to dual-fuel operations is discussed. Experimental tests were performed to define the general behaviour of the engine, especially at partial loads. Main target of the present study was the analysis of engine requirements to maintain the same output load as the full-diesel operation, and controlling exhaust emissions.
Technical Paper

Study of the Influence of the Injection System in a Multi-Dimensional Spray Simulation

2005-09-11
2005-24-088
The introduction of the high-pressure fully electronic-controlled injection systems has opened a number of new possibilities to optimize diesel engine performance and to reduce pollutant emissions. However greater research efforts are required to meet future European emission legislation. The control of the combustion process, which determines to a large extent the amount of pollutant emissions, requires primarily an understanding of its physics and chemistry as well as the capability to modify one or more of the interdependent process parameters in a given direction. Since many parameters have to be considered, a combined experimental-numerical approach is required.
Technical Paper

The Effect of Varying the Injected Charge Stoichiometry in a Partially Stratified Charge Natural Gas Engine

2005-04-11
2005-01-0247
Ultra lean-burn natural gas engines offer the potential for lower emissions and higher efficiency than conventional SI engines. Combustion instabilities near the lean limit can be addressed by partially stratifying the in-cylinder charge. The Partially Stratified Charge (PSC) approach involves micro-direct-injection of pure fuel, or a fuel-air mixture, to create a rich zone in the region of the spark-plug. This has been demonstrated to improve combustion in an ultra-lean bulk mixture. An experimental premixing apparatus was devised to investigate the effect of changing the stoichiometry of the micro-direct-injected charge. In conjunction, a numerical methodology was used as an aid to understanding the complex in-cylinder processes. Although rich premixed micro-injection improved engine performance over the homogeneous case, the fastest heat release rate was found to occur with a pure fuel PSC charge.
Technical Paper

Combustion and Spray Simulation of a DI Turbocharged Diesel Engine

2002-10-21
2002-01-2776
The recent innovations on automotive Diesel engines require significant research efforts. The new generation of fully electronically controlled injection systems have opened new ways to reduce emissions and improve the efficiency of the engine. The free mapping of injection law together with the enhanced injection pressures favor, in fact, the optimization of mixture formation. In this field, the 3D simulation is playing a substantial role to support the design of combustion chamber. This paper presents a computational model to simulate the multi-injection process, the mixture formation and the combustion of DI diesel engines with high-pressure injection systems. The main code is a modified version of the KIVA 3V and the modifications presented in this work are a high pressure break up model and a multi component evaporation model. The code has been validated through experimental data on a 4-cylinder, 1910 cc, DI turbocharged Diesel engine (Fiat 1.9 JTD).
Technical Paper

Study of the Impact of Variations in the Diesel-Nozzle Geometry Parameters on the Layout of Multiple Injection Strategy

2002-03-04
2002-01-0217
In the present paper the impact of three different geometrical layouts of the discharge nozzle of a high-pressure diesel injector designed is examined for a common rail second generation direct injection system. The paper presents a comparative study of the spray behavior of the three different nozzle layouts connected to a 150 MPa rail-pressure when mounted on a 1.6 liter European passenger car engine. To evaluate experimentally the differences in the fundamental physical spray parameters several specially developed optical visualization techniques are used, which enable phase-Doppler, Laser-sheet and high-speed recordings of dense high pressure sprays. The change in basic spray parameters (time-resolved droplet distribution and spray momentum) caused by the nozzle geometry variation is examined. The impact on the in-cylinder penetration and mixing characteristics is studied with a 3D-numerical simulation code NCF-3D.
Technical Paper

Experimental Validation of a GDI Spray Model

2002-03-04
2002-01-1137
A computational model and an experimental analysis have been performed to study the atomisation processes of hollow cone fuel sprays from a high pressure swirl injector for gasoline direct injection (GDI) engines. The objective has been to obtain reliable simulations and better understood structure and evolution of the spray and its interaction with air the flow field. The 3D computations are based on the KIVA 3 code in which basic spray sub models have been modified to simulate break-up phenomena and evaporation process. Spray characteristics have been measured using a system, able to gather and to process spray images, including a CCD camera, a frame grabber and a pulsed sheet obtained by the second harmonic of Nd-YAG laser (wavelength 532 nm, width 12 ns, thickness 80 μm). The readout system has been triggered by a TTL signal synchronized with the start of injection. A digital image processing software has been used to analyse the collected pictures.
Technical Paper

Analysis of Combustion Instability Phenomena in a CNG Fueled Heavy-Duty Turbocharged Engine

2001-05-07
2001-01-1907
The use of Compressed Natural Gas as an alternative fuel in urban transportation is nearly established and represents an efficient short and medium term solution to face with urban air pollution. However, in order to completely exploit its potential, the engine needs to be specifically designed to operate with this fuel. In the latest years, the authors have investigated the performances of a Heavy Duty Turbocharged CNG fuelled engine both experimentally and by using some analytical tools specifically developed by them which have been used for the engine optimisation. In the present paper the simulation approach has been enlarged by means of a co-operative use of a CFD code and experimental analysis on the actual engine. The numerical simulation of combustion process has, in fact, been used, to interpret series of pressure cycles, aiming to analyse how cyclic fluctuations influence engine behaviour in terms of combustion efficiency and temperature and pollutant distribution.
Technical Paper

Enhanced Mixture Preparation Approach for Lean Stratified SI-Combustion by a Combined Use of GDI and Electronically Controlled Valve-Timing

2000-03-06
2000-01-0532
The first part of the paper gives an overview of the current status in fuel consumption gain of the GDI-vehicles previously launched on the European market. In order to increase the potential for a further gain in specific fuel consumption the behaviour of 3 different combustion chamber layouts are studied. The chamber layouts are aimed to adapt as well as possible to the particular requirements for application to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application that shows the different steps of a structured optimisation methodology for a 1.2 litre, small bore 4-cylinder engine. The applications of an air-motion-guided and a wall-guided layout with a mechanically actuated valve train to the same combustion chamber are discussed. The potential of the air-motion-guided concept is enhanced through the introduction of an electromagnetic fully variable valve train.
Technical Paper

Experimental and Numerical Approach to Injection and Ignition Optimization of Lean GDI-Combustion Behavior

1999-03-01
1999-01-0173
The first part of the paper gives an overview of the current development status of the GDI system layout for the middle displacement engine, typically 2 liter, using the stoichiometric or weak lean concept. Hereafter are discussed the particular requirements for the transition to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application of the different steps of the optimization methodology for a 1.2 liter, small bore 4 cylinder engine from its original base line MPI version towards the lean stratified operation mode. The latest changes in the combustion model, used in the numerical simulation software applied to the combustion chamber design, are discussed and comparison made with the previous model. The redesign of the combustion chamber geometry, the proper choice of injector atomizer type and location and the use of two-stage injection and multi-spark strategies are discussed in detail.
Technical Paper

Mass Transfer Improvements in Catalytic Converter Channels: An Hybrid BGK-Finite Volume Numerical Simulation Method

1997-10-01
972907
For compliance with future LEV/ULEV emission standards in United States and Euro 2000/Euro 2005 standards in European Community, catalytic converter performance has to be remarkably improved. The development of simulation codes allows to investigate a high range of possible exhaust system configurations and engine operating parameters. In the present study an hybrid Lattice BGK-finite volume technique will be described, able to determine the mass transfer rates of the chemical species to the catalyzed wall of the monolith channels. The BGK code solves the fluid motion governing equations in a reduced form obtained by discretizing the continuum in a fixed number of particles. Each of them will be moved by a set of discrete velocities and collide with the neighbour particles according to a fixed pattern of particle-interaction.
Technical Paper

Heat Transfer Evaluation in 3D Computations of Premixed SI Engines

1997-10-01
972876
3D calculations of homogeneous charge spark ignition engines were carried out using the KIVA III code. A modified wall function was introduced by an approximate solution of the one -dimensional simplified equations of energy and mass balance. The model takes into account the pressure unsteadiness and the mean rate of combustion in boundary layer. Moreover a modified turbulent conductivity law was proposed following the classical Prandtl approach. The predictions of heat transfer model were compared with the mean heat flows calculated by thermodynamic processing of pressure cycles in motored engines. Two engines with different geometry were used. Namely: a CFR engine running 900 rpm and an AVL engine, running at 2200 rpm. The results regarding heat transfer seem very encouraging. The combustion phase was simulated using a Fractal Flame Model (FFM) elsewhere describe. Simulations in firing conditions were compared with measurements carried out on a CFR engine and on an AVL engine.
Technical Paper

A Simulation Model for a High Pressure Injection Systems

1997-05-01
971595
Pollutant emissions from D.I. Diesel engines strongly depend on injection system characteristics and mainly on injection pressure and timing. In the latest years some solutions have been proposed based on very high fuel pressure values (up to 150 MPa). Among them, the so called “Common rail” system configuration, being able to electronically control needle lift and injection pressure, seems to be particularly promising. Much experimental and theoretical work has been done to improve system performance for automotive applications. With the aim of investigating the influence of some details of geometrical configuration on the injector operating mode, a mathematical model able to describe the pressure-time history in any section of the delivery pipe and the fuel injection rate through the nozzle has been developed, based on a semi-implicit finite volumes approach. The computed results have been compared with experimental data provided by the Institut Français du Pétrole.
X