Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Technical Paper

1D Thermo-Fluid Dynamic Modelling of a S.I. Engine Exhaust System for the Prediction of Warm-Up and Emission Conversion during a NEDC Cycle

This work describes an experimental and numerical investigation of the thermal transient of i.c. engine exhaust systems. A prototype of exhaust system has been investigated during a NEDC cycle in two different configurations. Firstly an uncoated catalyst has been adopted to consider only the effect of the gas-wall heat transfer. The measurements have been repeated on the same exhaust system equipped with a coated catalyst to point out the contribution of the chemical reactions to the thermal transient of the system. The measured values have been compared to the predicted results carried out with a 1D thermo fluid dynamic code, developed in-house to account for the thermal transient of the system and the chemical reactions occurring in the catalyst.
Technical Paper

The Prediction of 1D Unsteady Flows in the Exhaust System of a S.I. Engine Including Chemical Reactions in the Gas and Solid Phase

The paper describes the research work concerning the simulation of 1D unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN has been developed to enable the concurrent prediction of the wave motion in the intake and exhaust ducts, the chemical composition of the gas discharged by the cylinder of a s.i. engine, the chemical and thermal behavior of catalytic converters. The effect of considering the transport of chemical species with reactions in gas phase (post-oxidation of unburned HC in the exhaust manifold) and in solid phase (conversion of pollutants in the catalyst) on the predicted wave motion is reported.
Technical Paper

An Integrated Simulation Model for the Prediction of S.I. Engine Cylinder Emissions and Exhaust After-Treatment System Performance

The calculation of the main pollutant emissions discharged into the atmosphere by means of numerical codes requires the development of integrated models, including either an accurate thermodynamic in-cylinder analysis and the simulation of reacting unsteady flows in the duct system. This paper describes the main features of the numerical model GASDYN developed by the authors, which in the last years has been enhanced in order to achieve this kind of objectives. A multi-zone approach has been adopted to predict the combustion process in s.i. engines, whereas the so called super-extended Zeldovich mechanism has been introduced to perform a more detailed description of all the chemical reactions involved in the NOx production process. The simulation of the reacting flows in the exhaust manifold has been completed by the introduction of further enhancements to predict the chemical behavior of gases inside the catalytic converters.