Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Modeling of silencers for internal combustion engines: 1D-3D coupling, network of 1D elements and a generic 3D cell approach

2009-09-13
2009-24-0133
Increasing demands on the capabilities of engine simulation and the ability to accurately predict both performance and acoustics has lead to the development of multiple approaches, ranging from fully 3D to simplified 1D models. In this work it will be described the development and application of hybrid 1D-3D approaches and an innovative one based on the 3D cell element. This is designed to model the acoustics of intake and exhaust system components used in internal combustion engines. Models of components are built using a network or grid of 3D cells based primarily on the geometry of the system. This means that these models can be built without fundamental knowledge of acoustically equivalent systems making their range of application larger as well as making them simpler to construct. Due to the 3D nature of these models it is also possible to predict higher order modes and improve the accuracy of models at high frequencies compared to conventional plane wave approaches.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

A Coupled 1D-multiD Nonlinear Simulation of I.C. Engine Silencers with Perforates and Sound-Absorbing Material

2009-04-20
2009-01-0305
Nowadays a great attention is paid to the level and quality of noise radiated from the tailpipe end of intake and exhaust systems, to control the gas dynamic noise emitted by the engine as well as the characteristics of the cabin interior sound. The muffler geometry can be optimized consequently, to attenuate or remark certain spectral components of the engine noise, according to the result expected. Evidently the design of complex silencing systems is a time-consuming operation, which must be carried out by means of concurrent experimental measurements and numerical simulations. In particular, 1D and multiD linear/non-linear simulation codes can be applied to predict the silencer behavior in the time and frequency domain. This paper describes the development of a 1D-multiD integrated approach for the simulation of complex muffler configurations such as reverse chambers with inlet and outlet pipe extensions and perforated silencers with the addition of sound absorbing material.
Journal Article

Modeling of Silencers for I.C. Engine Intake and Exhaust Systems by Means of an Integrated 1D-multiD Approach

2008-04-14
2008-01-0677
This paper describes the development of a fully 1D and of a 1D-multiD integrated approach for the simulation of complex muffler configurations. The fully 1D approach aims to model the muffler recurring to an equivalent net of 1D pipes. An expansion chamber with offset inlet and outlet pipes was modeled with this preocedure and the resuts compared to CFD simulations, pointing out some critical aspects in the TL prediction. The HLLC Riemann solver and its extension to the second order were implemented both in the 1D and multiD models and exploited to handle the interface between the calculation domains. The integrated 1D-multiD approach was used afterwards to predict the transmission loss of more complex geometries such as series chambers with extended inlet and outlet pipes and with flow reversals. A new procedure has been adopted to calculate the transmission loss, imposing a pressure impulse at the inlet and evaluating the response of the muffler.
Technical Paper

Integrated 1D-MultiD Fluid Dynamic Models for the Simulation of I.C.E. Intake and Exhaust Systems

2007-04-16
2007-01-0495
This work describes the development, application and coupling of two different numerical codes, respectively based on a 1D (Gasdyn) and 3D (OpenFOAM) schematization of the geometrical domain. They have been adopted for the prediction of the wave motion inside the intake and the exhaust systems of internal combustion engines. The HLLC Riemann solver has been implemented both in the CFD and the 1D codes to solve the Euler system of equations, in order to operate with the same solver on the different calculation domains. Moreover, the HLLC solver has been applied to treat the boundary conditions at the interface between the two domains, in such a way to allow the propagation of flow disuniformities through the domain interface, without affecting the solution accuracy. The hybrid approach was used for the simulation of two different test cases: a complex 5 into 1 pipe junction of a high performance V10 engine and a Venturi tube plus a Helmholtz resonator of a single cylinder S.I. engine.
Technical Paper

Prediction of the Attenuation Characteristics of I.C. Engine Silencers by 1-D and Multi-D Simulation Models

2006-04-03
2006-01-1541
This paper describes the development, application and comparison of two different non-linear numerical codes, respectively based on a 1D and 3D schematization of the geometrical domain, for the prediction of the acoustic behavior of common silencing devices for i.c. engine pulse noise abatement. A white noise approach has been adopted and applied to predict the attenuation curves of silencers in the frequency domain, while a non-reflecting boundary condition was used to represent an anechoic termination. Expansion chambers, Helmholtz and column resonators, Herschel-Quincke tubes have been simulated by both the 1D and the 3D codes and the results compared to the available linear acoustic analytical solutions. Finally, a hybrid approach, in which the CFD code has been integrated with the 1D model, is described and applied to the simulation of a single cylinder engine. The computed results are compared to the measured pressure waves and emitted sound pressure level spectra.
Technical Paper

A 1D Unsteady Thermo-Fluid Dynamic Approach for the Simulation of the Hydrodynamics of Diesel Particulate Filters

2006-04-03
2006-01-0262
A new approach for the fluid-dynamic simulation of the Diesel Particulate Filters (DPF) has been developed. A mathematical model has been formulated as a system of nonlinear partial differential equations describing the conservation of mass, momentum and energy for unsteady, compressible and reacting flows, in order to predict the hydrodynamic characteristics of the DPF and to study the soot deposition mechanism. In particular, the mass conservation equations have been solved for each chemical component considered, and the advection of information concerning the chemical composition of the gas has been figured out for each computational mesh. A sub-model for the prediction of the soot cake formation has been developed and predictions of soot deposition profiles have been calculated for different loading conditions. The results of the simulations, namely the calculated pressure drop, have been compared with the experimental data.
Technical Paper

1D Thermo-Fluid Dynamic Modelling of a S.I. Engine Exhaust System for the Prediction of Warm-Up and Emission Conversion during a NEDC Cycle

2005-09-11
2005-24-073
This work describes an experimental and numerical investigation of the thermal transient of i.c. engine exhaust systems. A prototype of exhaust system has been investigated during a NEDC cycle in two different configurations. Firstly an uncoated catalyst has been adopted to consider only the effect of the gas-wall heat transfer. The measurements have been repeated on the same exhaust system equipped with a coated catalyst to point out the contribution of the chemical reactions to the thermal transient of the system. The measured values have been compared to the predicted results carried out with a 1D thermo fluid dynamic code, developed in-house to account for the thermal transient of the system and the chemical reactions occurring in the catalyst.
Technical Paper

Thermo-Fluid Dynamic Modeling and Experimental Investigation of a Turbocharged Common Rail DI Diesel Engine

2005-04-11
2005-01-0689
The paper describes the results of a parallel 1D thermo-fluid dynamic simulation and experimental investigation of a DI turbocharged Diesel engine. The attention has been focused on the overall engine performances (air flow, torque, power, fuel consumption) as well as on the emissions (NO and particulate) along the after-treatment system, which presents a particulate filter. The 1D research code GASDYN for the simulation of the whole engine system has been enhanced by the introduction of a multi-zone quasi-dimensional combustion model for direct injection Diesel engines. The effect of multiple injections is taken into account (pilot and main injection). The prediction of NO and soot has been carried out respectively by means of a super-extended Zeldovich mechanism and by the Hiroyasu kinetic approach.
Technical Paper

Prediction of S.I. Engine Emissions During an ECE Driving Cycle via Integrated Thermo-Fluid Dynamic Simulation

2004-03-08
2004-01-1001
The paper describes the research work carried out on the thermo-fluid dynamic modeling of an S.I. engine coupled to the vehicle in order to predict the engine and tailpipe emissions during the ECE European driving cycle. The numerical code GASDYN has been extended to simulate the engine + vehicle operation during the first 90 seconds of the NEDC driving cycle, taking account of the engine and exhaust system warm-up after the cold start. The chemical composition of the engine exhaust gas is calculated by means of a thermodynamic multi-zone combustion model, augmented by kinetic emission sub-models for the prediction of pollutant emissions. A simple procedure has been implemented to model the vehicle dynamic behavior (one degree of freedom model). A closed-loop control strategy (proportional-derivative) has been introduced to determine the throttle opening angle, corresponding to the engine operating point when the vehicle is following the ECE cycle.
Technical Paper

The Prediction of 1D Unsteady Flows in the Exhaust System of a S.I. Engine Including Chemical Reactions in the Gas and Solid Phase

2002-03-04
2002-01-0003
The paper describes the research work concerning the simulation of 1D unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN has been developed to enable the concurrent prediction of the wave motion in the intake and exhaust ducts, the chemical composition of the gas discharged by the cylinder of a s.i. engine, the chemical and thermal behavior of catalytic converters. The effect of considering the transport of chemical species with reactions in gas phase (post-oxidation of unburned HC in the exhaust manifold) and in solid phase (conversion of pollutants in the catalyst) on the predicted wave motion is reported.
Technical Paper

An Integrated Simulation Model for the Prediction of S.I. Engine Cylinder Emissions and Exhaust After-Treatment System Performance

2001-09-23
2001-24-0045
The calculation of the main pollutant emissions discharged into the atmosphere by means of numerical codes requires the development of integrated models, including either an accurate thermodynamic in-cylinder analysis and the simulation of reacting unsteady flows in the duct system. This paper describes the main features of the numerical model GASDYN developed by the authors, which in the last years has been enhanced in order to achieve this kind of objectives. A multi-zone approach has been adopted to predict the combustion process in s.i. engines, whereas the so called super-extended Zeldovich mechanism has been introduced to perform a more detailed description of all the chemical reactions involved in the NOx production process. The simulation of the reacting flows in the exhaust manifold has been completed by the introduction of further enhancements to predict the chemical behavior of gases inside the catalytic converters.
X