Refine Your Search

Topic

Search Results

Technical Paper

Downhill Safety Assistant Driving System for Battery Electric Vehicles on Mountain Roads

2019-09-15
2019-01-2129
When driving in mountainous areas, vehicles often encounter downhill conditions. To ensure safe driving, it is necessary to control the speed of vehicles. For internal combustion engine vehicles, auxiliary brake such as engine brake can be used to alleviate the thermal load caused by the continuous braking of the friction brake. For battery electric vehicles (BEVs), regenerative braking can be used as auxiliary braking to improve brake safety. And through regenerative braking, energy can be partly converted into electrical energy and stored in accumulators (such as power batteries and supercapacitors), thus extending the mileage. However, the driver's line of sight in the mountains is limited, resulting in a certain degree of blindness in driving, so it is impossible to fully guarantee the safety and energy saving of downhill driving.
Technical Paper

Energy Consumption Optimization for the Electric Vehicle Air Conditioning Using the Condensate Water

2019-04-02
2019-01-0148
In summer, the relatively low temperature water condenses in the evaporator when the vehicle air-conditioning (AC) is running. At present, the vehicle AC condensate water without well utilization is directly wasted. The condenser’s thermal transfer performance has a great influence on the AC performance, and to increase the convective heat transfer coefficient (CHTC) is the key to its design. In this paper, a method of using atomized condensate water (CW) to enhance the condenser’s thermal transfer performance is proposed, which can make the most of the CW's cold energy. It achieves the reuse of CW and increases the condenser’s CHTC. First, the CW flow calculation model in the evaporator and the calculation model of the condenser enhanced thermal transfer using atomized CW are both set up. The influence of the evaporation degree of atomized CW particles in the air on the enhancement effect is comprehensively considered.
Technical Paper

Effect of Circumferential Magnetic Field on Braking Performance of a Direct Vane Magnetorheological Fluid Retarder

2019-04-02
2019-01-0342
The hydraulic retarder used in commercial vehicles can provide hydraulic damping to generate braking torque, reducing the pressure of the braking system on the slope section and increasing the safety. In this paper, the magnetorheological fluid with fast magnetic field reflection characteristics is used to increase the response speed of the hydraulic retarder, which can effectively reduce the response time of the hydraulic retarder. In this paper, the influence of the change of circumferential magnetic field on the braking torque of the magnetorheological fluid retarder is studied.
Technical Paper

A Study on Safety Intelligent Driving System for Heavy Truck Downhill in Mountainous Area

2018-10-05
2018-01-1887
Mountainous area makes up more than half of the whole land area of China, the road of which is full of ups and downs. Heavy commercial vehicles as the main means of transport in mountainous areas, braking torque recession, even brake failure, often happens because of the overheating in long downhill journey, which seriously threatens the safety of the driving. Therefore, this paper presents an intelligent assistance system based on Geographic Information System and vehicle dynamics. The main brake duration and heat generation can be effectively reduced through adjusting the speed at the slope top, applying the engine auxiliary brake in the initial stage and choosing braking strategy appropriately, in order to prolong the downhill driving distance and improve the safety during continuous braking. This paper characterizes and analyses the road gradients and their effects on braking heat generation.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

Combined Hill Descent Braking Strategy for Heavy Truck in the Featured-Slope

2017-09-17
2017-01-2535
The continuous braking for the brake drum will cause the brake thermal decay when the heavy truck is driving down the long slope in the mountain areas. It reduces the heavy truck’s braking performance and the braking safety. The engine braking and the hydraulic retarder braking both consume the kinetic energy of the heavy truck and can assist the truck driving in the mountain areas. This research proposes a combined hill descent braking strategy for heavy truck based on the recorded information of the slopes to ensure the braking safety of the heavy truck. The vehicle dynamic model and the brake drum temperature rising model are established to analyze the drum’s temperature variation during the downhill progress of the heavy truck. Then based on the slope information, the combined braking temperature variation is analyzed considering the characteristics of the engine braking, the drum braking and the hydraulic retarder braking.
Technical Paper

Study on the Effects of Magnetic Field on Magnetorheological Fluid Hydraulic Retarder Braking Torque

2017-09-17
2017-01-2503
In order to ensure driving safety, heavy vehicles are often equipped with hydraulic retarder, which provides sustained, stable braking torque and converts the vehicle kinetic energy into heat taken away by the cooling system when traveling on a long downhill. The conventional hydraulic retarder braking torque is modulated by adjusting the liquid filling rate, which leads to slow response and difficult control. In this paper, a new kind of magnetorheological (MR) fluid hydraulic retarder is designed by replacing the traditional transmission oil with MR fluid and arranging the excitation coils outside the working chamber. The braking torque can be controlled by the fluid viscosity of MR fluid with the variation of magnetic field. Compared with the traditional hydraulic retarder, the system has the advantages of fast response, easy control and high adjustment sensitivity.
Technical Paper

Brake Guidance System for Commercial Vehicles with Coordinated Friction and Engine Brakes

2017-09-17
2017-01-2508
Using friction brakes for long time can increase easily its temperature and lower vehicle brake performance in the downhill process. The drivers' hysteretic perception to future driving condition could mislead them to stop untimely the engine brake, and some other auxiliary braking devices are designed to increase the brake power for reduction of the friction brake torque. The decompression engine brake has complex structure and high cost, and the application of eddy current retarder or hydraulic retarder on the commercial vehicles is mainly limited to their cost and mass. In this paper, an innovative brake guidance system for commercial vehicles with coordinated friction brakes and engine brake is introduced to guide the drivers to minimize the use of the friction brakes on the downhill with consideration of future driving conditions, which is aimed at releasing the engine brake potential fully and controlling the friction brake temperature in safe range.
Technical Paper

The Effect of Commercial Vehicle Head-Up Display Reminding System on Driving Safety in Mountainous Area

2017-09-17
2017-01-2500
Head-up Display (HUD) system can avoid drivers’ distraction on dashboard and effectively reduce collisions caused by emergency events, which is gradually being realized by researchers around the world. However, the current HUD only displays information like speed, fuel consumption, other information like acceleration and braking can’t be displayed yet. This research will use the indicator symbol‘s color and position change to remind drivers to brake or accelerate. Drivers can do driving operation timely and accurately. The system has the advantages of safety, intuition and real-time. The vehicle safe speed is calculated according to the road parameters, like adhesion coefficient and slope, and vehicle parameters, such as vehicle mass and centroid. Then, the appropriate braking operations are obtained by combining the vehicle driving state. The braking information is corresponded to the color and position change of the indicator symbol to prompt the drivers by the HUD interface.
Technical Paper

Over-the-Horizon Safety Speed Warning System for Heavy-Duty Vehicle in Mountain Areas

2017-03-28
2017-01-0091
The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
Technical Paper

Safe Travelling Speed of Commercial Vehicles on Curves Based on Vehicle-Road Collaboration

2017-03-28
2017-01-0080
Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
Technical Paper

Experimental Study of Hydraulic Retarder Waste Heat Recovery Based on the Organic Rankine Cycle

2016-09-27
2016-01-8079
The hydraulic retarder is an important auxiliary braking device. With merits such as its high braking torque, smooth braking, low noise, long service life and small size, it is widely used on modern commercial vehicles. Transmission fluid of traditional hydraulic retarder is cooled by engine cooling system, which exhausts the heat directly and need additional energy consumption for the thermal management component. On account of the working characteristics of hydraulic retarder, this study designs a set of waste heat recovery system based on the Organic Rankine Cycle (ORC). Under the premise of ensuring stable performance of hydraulic retarder, waste heat energy in transmission fluid is recycled to supplement energy requirements for cooling system. First of all, a principle model, which is scaled down according to D300 retarder`s thermal power generation ration of 1:100, is established. Then through theoretical calculations, components' structural parameters of the ORC are determined.
Technical Paper

The Research on the Temperature Control Stability of Hydraulic Retarder Oil Based on Organic Rankine Cycle

2016-09-27
2016-01-8085
The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
Technical Paper

Research on Matching for the Rankine Cycle Evaporate-condensate System of Hydraulic Retarder

2016-09-18
2016-01-1938
The hydraulic retarder is an auxiliary braking device used for commercial vehicle in a long slope brake, and its transmission oil generates a lot of heat in its working process. If the heat of transmission doesn’t go through a reasonable management, it will seriously affect the braking performance of hydraulic retarder. To cool down the transmission oil, it will aggravates the load of the engine cooling system, and the long cooling path sometimes causes heat exchange not timely. When the Rankine cycle is used for cooling the hydraulic retarder transmission oil in virtue of its good heat transfer performance in phase change process, it can make the transmission oil temperature controlled more stable. In this new system, the setting parameters of the Evaporate-condensate system will affect the stability of the transmission oil temperature in the hydraulic retarder inlet and the energy recovery efficiency of the system.
Technical Paper

Study on Commercial Vehicle ECR Thermal Management System

2016-09-18
2016-01-1935
With the continuous increasing requirements of commercial vehicle weight and speed on highway transportation, conventional friction brake is difficult to meet the braking performance. To ensure the driving safety of the vehicle in the hilly region, the eddy current retarder (ECR) has been widely used due to its fast response, lower prices and convenient installation. ECR brakes the vehicle through the electromagnetic force generated by the current, and converted vehicle mechanical energy into heat through magnetic field. Air cooling structure is often used in the traditional ECR and cooling performance is limited, which causes low braking torque, thermal recession, and low reliability and so on. The water jacket has been equipped outside the eddy current region in this study, and the electric ECR is cooled through the water circulating in the circuit, which prolongs its working time.
Technical Paper

Low Pumping Loss Hydraulic Retarder with Helium Circulation System

2015-09-29
2015-01-2801
The hydraulic retarder, an important auxiliary brake, has been widely used in heavy vehicles. Under the non-braking working condition, the air resistance torque in the working chamber, which is formed by the rotor of hydraulic retarder's stirring the air, causes pumping loss. This research designs a new type of hydraulic retarder, whose helium is charged into working chamber through closed loop gas system under non-braking working condition, can reduce the parasitic power loss of transmission system. First, under non-braking working condition, the resistance characteristics are analyzed on the base of hydraulic retarder pumping model; then, considering some parameters, such as the volume of chambers and the initial gas pressure, the working chamber gas charge model is established, and the transient gas charge characteristics are also analyzed under non-braking working condition.
Technical Paper

The Experimental Study and Performance Analysis of Air-Friction Reduction System for Hydraulic Retarder

2015-04-14
2015-01-1127
The hydraulic retarder is an important auxiliary braking device for the heavy vehicle, which has some characteristics, such as the big brake torque and long duration braking, when the vehicle is traveling in braking state. However, the transmission power loss will be produced when the vehicle is traveling in non-braking state. This transmission power loss is called Air-friction. Firstly, the air flow distribution characteristics of retarder cavity are studied by computational fluid mechanics, and the Air-friction characteristic in different conditions is analyzed. Then, according to the Air-friction characteristics for the condition of different filling density, a set of vacuum air loss reduction system is designed. Meanwhile, the test bench for retarder Air-friction is set up, the test data of the revolution speed, pressure in cavity and air loss resistance is obtained according to the test bench for hydraulic retarder.
Technical Paper

Cold-end Temperature Control Method for the Engine Exhaust Heat Thermoelectric Module

2014-09-30
2014-01-2343
To make full use of engine exhaust heat and further improve the utilization of the energy efficiency of the heavy truck, thermoelectric module is used to contribute to thermoelectric power generation. The hot-end temperature of the module varies with the engine operating condition because it is connected with the exhaust pipe. The cold-end of the thermoelectric module is mainly cooled by engine cooling system. Increasing the temperature difference between the hot-end and cold-end of the thermoelectric module is a good way to improve the thermoelectric conversion efficiency. For the poor controllability of the hot-end temperature of the thermoelectric module, this study puts forward by lowering the cold-end temperature of the thermoelectric module so as to ensure the improvement of the thermoelectric conversion efficiency. The cooling circle for the cold-end of the thermoelectric module which is independent of the engine cooling system is built.
Technical Paper

Analysis of Hydraulic Retarder Air-Friction Characteristics

2014-09-28
2014-01-2504
The retarder is an important auxiliary braking device of heavy vehicles. However, the stirring air in the working wheels of the idle retarder would cause the transmission loss when the vehicle is traveling in non-braking state [1]. For certain driving conditions, the air-friction characteristics in the working wheels of the idle retarder are analyzed first. Then the relationship between the air density and the torque produced by stirring air is studied. The thermal characteristics of the retarder in the idle condition are also concerned according to the energy flow and heat transfer. Meanwhile, the increased transmission loss caused by the rising temperature of the stirring air and its inference on the transmission stability are also studied. Finally, the optimal range of air vacuum degrees in the working wheel of the idle retarder is determined and the evaluations for the air-friction and the heat transfer characteristics are given for the vacuum degrees.
Technical Paper

Relationship between Braking Force and Pedal Force of a Pedal Controlled Parallelized Energy-Recuperation Retarder System

2014-04-01
2014-01-1783
Focusing the vehicle riding safety and global environmental problems, plenty of solutions on vehicle braking systems appeals during the recent period. Criteria and standards set up for commercial vehicles which should have equipped assisted braking systems were established by amounts of governments. Since eddy current retarders plays an important role in the area of assisted braking system, this article presents an energy-recuperation retarder, which is parallel connected with the driveline through a planet gear system. This paper offers a particular Energy-Recuperation Eddy Current Retarder (ERECR) system with a pedal control system and its characteristics is presented, either. Initially, the constitution of the energy-recuperation eddy current retarder system is established whereas the working principle of the energy-recuperation eddy current retarder is presented by modeling the system and simulation.
X