Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Simulation Of Heat Transfer Properties And Residual Stress Analyses Of Cooling Curves Obtained From Quenching Studies

2005-11-22
2005-01-4178
This paper describes the use of computational simulation to examine the heat transfer properties and resulting residual stress obtained by quenching a standard probe into various quench oils. Cooling curves (time-temperature profiles) were obtained after immersing a preheated 12.5 mm dia. × 60 mm cylindrical Inconel 600 (Wolfson) probe with a Type K thermocouple inserted into the geometric center into a mineral oil quenchant. Different quenching conditions were used, as received (“fresh”) and after oxidation. Surface temperatures at the cooling metal - liquid quenchant interface and heat transfer coefficients are calculated using HT-Mod, a recently released computational code. Using this data, the temperature distribution was calculated. The corresponding residual stresses were calculated using ABAQUS. This work illustrates potential benefits of computational simulation to examine the expected impact of different quenchants and quenching conditions on a heat treatment process.
Technical Paper

An Accelerated Carburizing Process

2005-11-22
2005-01-4174
One of the most important heat treating processes is steel carburizing. However, the relatively long process times makes carburizing (and related thermochemical processes) a particularly energy consumptive and expensive process. Thus, if significant reductions in process times or temperatures can be achieved, this would result in substantial product cost savings and reduced energy consumption. Various methods of accelerating the carburizing process have been reported previously including: the use of rare earth metals, optimization by computer control of endo gas composition, use of superficial nitriding and others. In this paper, an overview of a new process using a hydrocarbon decomposition reaction catalyst that results in substantial diffusion rate acceleration and/or the potential use of significantly lower carburization temperatures will be discussed.
Technical Paper

Lubrication Applications of Coat Forming Additives

2005-05-11
2005-01-2181
One of the ongoing needs in the materials industry is to facilitate significant production cost saving due to energy usage. One way to do this is to use the thermal energy generally emitted during heat treatment to facilitate additive reactions with the material surface. This has been successfully done by formulating specific lubricity additives into on a oil or aqueous quenching media. When the material is heated and subsequently quenched, the lubricity additive will then react with the surface providing substantial improvements in lubricity. This process is called: “coat forming”. The objective of this paper is to provide an overview of coat forming reactions, additives, and subsequent application performance.
Technical Paper

Surface Engineered Coatings and Surface Additive Interactions for Boundary Film Formation to Reduce Frictional Losses in the Automotive Industry: A review

2005-05-11
2005-01-2180
Surface engineering encompasses numerous vital and diverse technologies in the design and wear of automotive and off-highway components. These technologies include CVD, PVD, ion implantation and conventional heat treatments such as carburizing, nitriding and carbonitriding. Although these technologies are well known, it is considerably more difficult to understand the relative importance of the various technology niches for these processes, and it is very difficult to find effective summaries of the impact of these technologies on comparative lubrication formulation and practice. The objectives of this paper are two-fold. One is to review the impact of surface engineered coatings on the surface chemistry of steel. The second objective is to review the impact of the surface chemistry obtained by different surface treatments on boundary film formation to reduce frictional losses during fluid lubrication.
X