Refine Your Search

Topic

Search Results

Standard

Communication for Smart Charging of Plug-in Electric Vehicles Using Smart Energy Profile 2.0

2019-08-20
CURRENT
J2847/1_201908
This document describes the details of the Smart Energy Profile 2.0 (SEP2.0) communication used to implement the functionality described in the SAE J2836-1 use cases. Each use case subsection includes a description of the function provided, client device requirements, and sequence diagrams with description of the steps. Implementers are encouraged to consult the SEP2.0 schema and application specification for further details. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Standard

Hybrid and EV First and Second Responder Recommended Practice

2019-07-29
CURRENT
J2990_201907
xEVs involved in incidents present unique hazards associated with the high voltage system (including the battery system). These hazards can be grouped into three categories: chemical, electrical, and thermal. The potential consequences can vary depending on the size, configuration, and specific battery chemistry. Other incidents may arise from secondary events such as garage fires and floods. These types of incidents are also considered in the recommended practice (RP). This RP aims to describe the potential consequences associated with hazards from xEVs and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred with an electrified vehicle. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement. Lithium ion (Li-ion) batteries used for vehicle propulsion power are the assumed battery system of this RP.
Standard

Infrastructure-mounted Pantograph (Cross-Rail) Connection

2019-06-03
WIP
J3105-1
This document details one of the connections of the J-3105 document. The connections are referenced in the scope of the main document J-3105. J-3105-1 details the infrastructure-mounted Pantograph or the cross-rail connection. All the common requirements are defined in the main document and this document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated connection device based on a cross-rail design. In order to allow interoperability for on-road vehicles (in particular buses and coaches) one configuration is being described in this document. Other configurations may be used for non-standard applications (e.g. mining trucks or port vehicles).
Standard

Enclosed Pin and Socket Connection

2019-05-29
WIP
J3105/3
This document details one of the connections of the J-3105 document. The connections are referenced in the scope of the main document J-3105. J-3105-3 details the Enclosed Pin and Sleeve connection. All the common requirements are defined in the main document and this document provides for the details of the connection. This document covers the main safety and interoperability relevant requirements for an electric vehicle power transfer system using a conductive automated charging device based on an enclosed pin and socket design. In order to allow interoperability for on-road vehicles (in particular buses and coaches) one configuration is being described in this document. Other configurations may be used for non-standard applications (e.g. mining trucks or port vehicles).
Standard

Vehicle-mounted Pantograph (Bus Up) Connection

2019-05-29
WIP
J3105/2
This document details one of the connections of the J-3105 document. The connections are referenced in the scope of the main document J-3105. J-3105-2 details the Vehicle-mounted Pantograph or the Bus-up connection. All the common requirements are defined in the main document and this document provides for the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated charging device based on a conventional rail vehicle pantograph design. In order to allow interoperability for on-road vehicles (in particular buses and coaches) one configuration is being described in this document. Other configurations may be used for non-standard applications (e.g. mining trucks or port vehicles).
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2019-04-26
WIP
J2954
The Standard SAE J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless charging of light-duty electric and plug-in electric vehicles. A standard for wireless power transfer (WPT) based on the charge levels from WPT 1-3 (3.7-11 kW) enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. The SAE Standard J2954 addresses unidirectional charging, from grid to vehicle; bidirectional energy transfer may be evaluated for a future standard. This Standard is intended to be used in stationary applications (charging while vehicle is not in motion); dynamic applications may be considered in the future.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2019-04-23
CURRENT
J2954_201904
The Recommended Practice SAE J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless charging of light-duty electric and plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3, with some variations. A standard for wireless power transfer (WPT) based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under Recommended Practice SAE J2954 should also be able to be charged by SAE J1772 plug-in chargers.
Standard

Power Quality Requirements for Plug-In Electric Vehicle Chargers

2019-01-23
CURRENT
J2894/1_201901
The intent of this document is to develop a recommended practice for PEV chargers, whether on-board or off-board the vehicle, that will enable equipment manufacturers, vehicle manufacturers, electric utilities, and others to make reasonable design decisions regarding power quality. The three main purposes are as follows: 1 To identify those parameters of PEV battery charger that must be controlled in order to preserve the quality of the AC service. 2 To identify those characteristics of the AC service that may significantly impact the performance of the charger. 3 To identify values for power quality, susceptibility, and power control parameters which are based on current U.S. and international standards. These values should be technically feasible and cost effective to implement into PEV battery chargers. SAE J2894/2 will describe the test methods for the parameters/requirements in this document.
Standard

Communication for Plug-in Vehicles as a Distributed Energy Resource

2018-11-27
WIP
J2847/3
This document applies to a Plug-in Electric Vehicle (PEV) which is equipped with an onboard inverter and communicates using the Smart Energy Profile 2.0 Application Protocol (SEP2). It is a supplement to the SEP2 Standard, which supports the use cases defined by J2836/3TM. It provides guidance for the use of the SEP2 Distributed Energy Resource Function Set with a PEV. It also provides guidance for the use of the SEP2 Flow Reservation Function Set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV.
Standard

Use Cases for Communication between Plug-in Vehicles and Off-Board DC Charger

2018-08-30
WIP
J2836/2
This SAE Information Report SAE J2836/2TM establishes use cases and general information for communication between plug-in electric vehicles and the DC Off-board charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This applies to the off-board DC charger for conductive charging, which supplies DC current to the vehicle battery of the electric vehicle through a SAE J1772TM Hybrid coupler or SAE J1772TM AC Level 2 type coupler on DC power lines, using the AC power lines or the pilot line for PLC communication, or dedicated communication lines that is further described in SAE J2847/2. The specification supports DC energy transfer via Forward Power Flow (FPF) from grid-to-vehicle. The relationship of this document to the others that address PEV communications is further explained in section 5.
Standard

Guidelines for Electric Vehicle Safety

2018-08-30
WIP
J2344
This SAE Information Report identifies and defines the preferred technical guidelines relating to safety for Electric Vehicles (EVs) during normal operation and charging. Guidelines in this document do not necessarily address maintenance, repair, or assembly safety issues. The purpose of this SAE Information Report is to provide introductory safety guidelines information that should be considered when designing electric vehicles for use on public roadways. This document covers electric vehicles having a gross vehicle weight rating of 4536 kg (10 000 lb) or less that are designed for use on public roads.
Standard

Instructions for Using Plug-In Electric Vehicle (PEV) Communications, Interoperability and Security Documents

2018-07-18
CURRENT
J2836_201807
This SAE Information Report J2836 establishes the instructions for the documents required for the variety of potential functions for PEV communications, energy transfer options, interoperability and security. This includes the history, current status and future plans for migrating through these documents created in the Hybrid Communication and Interoperability Task Force, based on functional objective (e.g., (1) if I want to do V2G with an off-board inverter, what documents and items within them do I need, (2) What do we intend for V3 of SAE J2953, …).
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2018-05-15
WIP
J2931/4
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Electric Vehicle Power Transfer System Using a Three-Phase Capable Coupler

2018-04-25
CURRENT
J3068_201804
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer to an Electric Vehicle using a Coupler capable of, but not limited to, transferring three-phase AC power. It defines a conductive power transfer method including the digital communication system. It also covers the functional and dimensional requirements for the Electric Vehicle Inlet, Supply Equipment Connector, and mating housings and contacts. Moveable charging equipment such as a service truck with charging facilities are within scope. Charging while moving (or in-route-charging) is not in scope.
Standard

Security for Plug-In Electric Vehicle Communications

2018-02-15
CURRENT
J2931/7_201802
This SAE Information Report J2931/7 establishes the security requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility, ESI, Advanced Metering Infrastructure (AMI) and/or Home Area Network (HAN).
Standard

Performance Characterization of Electrified Powertrain Motor-Drive Subsystem

2018-02-12
CURRENT
J2907_201802
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2017-12-13
WIP
J1772
This SAE Standard covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
X