Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

HORIZON Europe Project AeroSolfd: GPF-Retrofit for Cleaner Urban Mobility

2023-08-28
2023-24-0114
Ultrafine particles, in particular solid sub-100 nm particles pose high risks to human health due to their high lung deposition efficiency, translocation to all organs including the brain and their harmful chemical composition; due to dense traffic, the population in urban environments is exposed to high concentrations of those toxic air contaminants, despite these facts, they are still widely neglected. Therefore, the EU-Commission set up a program for clean and competitive solutions for different problem areas which are regarded to be hotspots of such particles. HORIZON AeroSolfd is an EU project, co-funded by Switzerland that will deliver affordable, adaptable, and sustainable retrofit solutions to reduce exhaust tailpipe emissions from petrol engines, brake emissions and pollution in semi-closed environments.
Technical Paper

CFD Modeling of a DME CI Engine in Late-PCCI Operating Conditions

2023-04-11
2023-01-0203
Predictive combustion models are useful tools towards the development of clean and efficient engines operating with alternative fuels. This work intends to validate two different combustion models on compression-ignition engines fueled with Dimethyl Ether. Both approaches give a detailed characterization of the combustion kinetics, but they substantially differ in how the interaction between fluid-dynamics and chemistry is treated. The first one is single-flamelet Representative Interactive Flamelet, which considers turbulence-kinetic interaction but cannot correctly describe the stabilization of the flame. The second, named Tabulated Well Mixed, correctly accounts for local flow and mixture conditions but does not consider interaction between turbulence and chemistry. An experimental campaign was carried out on a heavy-duty truck engine running on DME at a constant load considering trade-off of EGR and SOI.
Technical Paper

Combustion Modeling in a Heavy-Duty Engine Operating with DME Using Detailed Kinetics and Turbulence Chemistry Interaction

2022-03-29
2022-01-0393
Dimethyl ether (DME) represents a promising fuel for heavy-duty engines thanks to its high cetane number, volatility, absence of aromatics, reduced tank-to-wheel CO2 emissions compared to Diesel fuel and the possibility to be produced from renewable energy sources. However, optimization of compression-ignition engines fueled with DME requires suitable computational tools to design dedicated injection and combustion systems: reduced injection pressures and increased nozzle diameters are expected compared to conventional Diesel engines, which influences both the air-fuel mixing and the combustion process. This work intends to evaluate the validity of two different combustion models for the prediction of performance and pollutant emissions in compression-ignition engines operating with DME. The first one is the Representative Interactive Flamelet while the second is the Approximated Diffusive Flamelet.
Technical Paper

Real Driving Emissions of Diesel and LNG Euro VI Heavy-Duty Vehicles Measured with FTIR-PEMS

2021-09-05
2021-24-0066
To replace conventional Diesel and to make the transport sector CO2 neutral, liquid bio methane or liquefied biogas (LBG) is one possible solution to replace conventional fuel. Due to the ongoing development of methane engines for trucks and the possible perspective of realizing closed CO2 cycles, a pilot project "Use of LBG (Liquefied Biogas) for Swiss heavy-duty transportation" has been launched in Switzerland. This project is intended to demonstrate the performance of LBG trucks as well as their environmental benefits. The emission behavior of the vehicles is a critical point in the evaluation of the idea of using methane as a fuel. In the present paper the conducted real drive emission measurements of two different methane gas and one Diesel powered truck, as reference, with the parallel use of a standard and FTIR-PEMS are presented. The configuration of both PEMS systems mounted on a trailer is shown, as well as the real drive scenario.
Technical Paper

Use of Butanol Blend Fuels on Diesel Engines - Effects on Combustion and Emissions

2020-04-14
2020-01-0333
Butanol, a four-carbon alcohol, is considered in the last years as an interesting alternative fuel, both for Diesel and for gasoline application. Its advantages for engine operation are: good miscibility with gasoline and diesel fuels, higher calorific value than ethanol, lower hygroscopicity, lower corrosivity and possibility of replacing aviation fuels. Like ethanol, butanol can be produced as a biomass-based renewable fuel or from fossil sources. In the research project, DiBut (Diesel and butanol) addition of butanol to Diesel fuel was investigated from the points of view of engine combustion and of influences on exhaust aftertreatment systems and emissions. One investigated engine (E1) was with emission class “EU Stage 3A” for construction machines, another one, engine (E2) was HD Euro VI. The most important findings are: with higher butanol content, there is a lower heat value of the fuel and there is lower torque at full load.
Technical Paper

Influences of Butanol Blends on Combustion and Emissions of a Small SI Engine

2018-10-30
2018-32-0058
In the general efforts to replace the fossil fuels in transportation by renewable fuels the bioalcohols are an important alternative. The global share of Bioethanol used for transportation is continuously increasing. Butanol, a four-carbon alcohol, is considered in the last years as an interesting alternative fuel, both for Diesel and for Gasoline application. Its advantages for engine operation are: good miscibility with gasoline and diesel fuels, higher calorific value than Ethanol, lower hygroscopicity, lower corrosivity and possibility of replacing aviation fuels. In the present work research with different nButanol portions in gasoline (BuXX)* was performed on the 2-cylinder SI engine with variations of several parameters on engine dynamometer. At different steady state operating points were varied: spark timing (αz), air excess factor (λ) and EGR-rate. Furthermore, the conversion rates and light-off of a 3-way-catalyst were investigated.
Technical Paper

PN-Emissions of Gasoline Cars MPI and Potentials of GPF

2018-04-03
2018-01-0363
Further efforts to reduce the air pollution from traffic are undertaken worldwide and the filtration of exhaust gas will also be increasingly applied on gasoline cars (GPF1 … gasoline particle filter). In the present paper, some results of investigations of nanoparticles from four MPI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, two variants of GPF were investigated on a high-emitting modern vehicle, including analytics of PAH and attempts of soot loading in road application. The modern MPI vehicles can emit a considerable amount of PN, which in some cases attains the level of Diesel exhaust gas without DPF and can pass over the actual European limit value for GDI (6.0 x 1011 #/km). The GPF-technology offers in this respect further poten-tials to reduce the PN-emissions of traffic.
Technical Paper

Experimental Investigation of Fuel Injection and Spark Timing for the Combustion of n-Butanol and iso-Butanol and Their Blends with Gasoline in a Two-Cylinder SI Engine

2017-09-04
2017-24-0115
In this study, the combustion of butanol, neat and mixed with gasoline, was investigated on a 0.6 liter two-cylinder spark ignition engine with fully adjustable fuel injection and spark timing, coupled with an eddy current dynamometer. Two isomers of butanol, n-butanol and iso-butanol, were examined. This basic parameter study gives information about potential requirements of engine control systems for butanol FFV. Compared to the traditionally used ethanol, butanol does not exhibit hygroscopic behaviour, is chemically less aggressive and has higher energy density. On other hand, different laminar burning velocity and higher boiling temperature of butanol, compared to gasoline, requires some countermeasures to keep the engine operation reliable and efficient.
Technical Paper

Nanoparticle Emissions of DI Gasoline Cars with/without GPF

2017-03-28
2017-01-1004
In the present paper some results of investigations of nanoparticles from five DI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, five variants of “vehicle - GPF” were investigated. These results originate from the project GasOMeP (Gasoline Organic & Metal Particulates), which focused on metal-nanoparticles (including sub 20nm) from gasoline cars with different engine technologies. The PN-emission level of the investigated GDI cars in WLTC without GPF is in the same range of magnitude very near to the actual limit value of 6.0 × 1012 #/km. With the GPF’s with better filtration quality, it is possible to lower the emissions below the future limit value of 6.0 × 1011 #/km. There is no visible nuclei mode and the ultrafine particle concentrations below 10mm are insignificant. Some of the vehicles show at constant speed operation a periodical fluctuation of the NP-emissions, as an effect of the electronic control.
Technical Paper

Effects of Ethanol Blend Fuels E10 and E85 on the Non-Legislated Emissions of a Flex Fuel Passenger Car

2016-04-05
2016-01-0977
A well-balanced use of alternative fuels worldwide is an important objective for a sustainable development of individual transportation. Several countries have objectives to substitute a part of the energy of traffic by ethanol as the renewable energy source. The global share of Bioethanol used for transportation is continuously increasing. Investigations of limited and unregulated emissions of a flex fuel vehicle with gasoline-ethanol blend fuel have been performed in the present work on the chassis dynamometer according to the measuring procedures, which were established in the previous research in the Swiss Network to adequately consider the transient (WLTC) and the stationary operation (SSC). The investigated fuel contained ethanol (E), in the portions of 10% & 85% by volume. The investigated vehicle represented a newer state of technology and an emission level of Euro 5. The engine works with homogenous GDI concept and with 3-W-catalyst (3WC).
Technical Paper

Investigations of NO2 in Legal Test Procedure for Diesel Passenger Cars

2015-09-06
2015-24-2510
As a result of increased use of catalytic exhaust aftertreatment systems of vehicles and the low-sulfur Diesel fuels there is an increasing share of nitrogen dioxide NO2 in the ambient air of several cities. This is in spite of lowering the summary nitric oxides NOx emissions from vehicles. NO2 is much more toxic than nitrogen monoxide NO and it will be specially considered in the next legal testing procedures. There are doubts about the accuracy of analyzing the reactive substances from diluted gas and this project has the objective to show how NO2 is changing as it travels down through the exhaust- and the CVS systems. For legal measurements of NO2 a WLTP-DTP subgroup (Worldwide Light Duty Test Procedures - Diesel Test Procedures) proposed different combinations of NOx-analyzers and analysis of NO and NOx. Some of these set-ups were tested in this work.
Technical Paper

Experiences from Nanoparticle Research on Four Gasoline Cars

2015-04-14
2015-01-1079
The invisible nanoparticles (NP)*) from combustion processes penetrate easily into the human body through the respiratory and olfactory pathways and carry numerous harmful health effects potentials. NP count concentrations are limited in EU for Diesel passenger cars since 2013 and for gasoline cars with direct injection (GDI) since 2014. The limit for GDI was temporary extended to 6 × 1012 #/km, (regulation No. 459/2012/EU). Nuclei of metals as well as organics are suspected to significantly contribute especially to the ultrafine particle size fractions, and thus to the particle number concentration. In the project GasOMeP (Gasoline Organic & Metal Particulates) metal-nanoparticles (including sub 20nm) from gasoline cars are investigated for different engine technologies. In the present paper some results of investigations of nanoparticles from four gasoline cars - an older one with MPI and three newer with DI - are represented.
Technical Paper

Particle Emissions of Modern Handheld Machines

2014-11-11
2014-32-0036
The progressing exhaust gas legislation for on- and off-road vehicles includes gradually the nanoparticle count limits. The invisible nanoparticles from different emission sources penetrate like a gas into the living organisms and may cause several health hazards. The present paper shows some results of a modern chain saw with & without oxidation catalyst, with Alkylate fuel and with different lube oils. The measurements focused specially on particulate emissions. Particulates were analysed by means of gravimetry (PM) and granulometry SMPS (PN). In this way the reduction potentials with application of the best materials (fuel, lube oil, ox-cat.) were indicated. It has been shown that the particle mass (PM) and the particle numbers (PN), which both consisting almost exclusively of unburned lube-oil, can attain quite high values, but can be influenced by the lube oil quality and can be considerably reduced with an oxidation catalyst.
Technical Paper

Investigations of Changes of the 2-Stroke Scooters Nanoparticles in the Exhaust- and CVS-System

2013-09-08
2013-24-0178
Nanoparticle emissions of two 2-stroke scooters were investigated along the exhaust and the CVS (Constant Volume Sampling) systems. Two configurations were tested: regular full-flow dilution configuration (denoted as “closed”) and also a modified sampling configuration (denoted as “open”). The scooters represent two distinct modern technologies. One scooter had direct injection TSDI*) (Two-Stroke Direct Injection). The other had a carburettor. Depending on the technology, the scooters produce different kind of aerosols (state-of-oxidation and SOF content). Moreover, the scooters were operated with and without oxidation catalyst. The tests were performed at two constant vehicular speeds (20 km/h and 40 km/h). The measuring procedures are those established during the previous research of the Swiss Scooter Network. The nanoparticulate emissions were measured using SMPS (Scanning Mobility Particle Sizer) and DC (Diffusion Charging) sensors.
Technical Paper

NO2-Formation in Diesel Particle Filter Systems

2013-04-08
2013-01-0526
NO₂ is much more toxic than NO. The average proportion of NO₂ in exhaust gases of vehicles increases significantly due to the use of oxidation catalysts and catalytic coatings in the exhaust gas systems during the last decades combined with generalization of using low sulfur fuels. Diesel oxidation catalysts (DOC) and Pt-containing DPF coatings are widely used to support the regeneration of particle filters, being a source of strongly increased production of NO₂. The present work shows some examples and summarizes the experiences in this matter performed at the Laboratories for IC-Engines & Exhaust Emissions Control (AFHB) of the University of Applied Sciences Biel-Bienne, Switzerland, during some research activities on engine dynamometers in the years 2010-2012.
Technical Paper

Diesel Emissions with DPF & SCR and Toxic Potentials with BioDiesel (RME) Blend Fuels

2013-04-08
2013-01-0523
The use of alternative fuels and among them the biofuels of 1st generation - fatty acid methyl esters FAME's and pure plants oils - for propulsion of IC engines is an important objective in several countries in order to save the fossil fuels and to limit the CO₂ production. The properties of bio-fuels and bio-blend-fuels can vary and this has an impact on the operation and emissions of diesel engines and on the modern exhaust aftertreatment systems. The present paper represents the most important results obtained with RME at AFHB, EMPA and EC-JRC. Most of the activities were performed in the network project BioExDi (Biofuels, Exhaust Systems Diesel) in collaboration between industry and research institutes.
Video

DPF's Regeneration Procedures and Emissions with RME Blend Fuels

2012-06-18
The fatty acid methyl esters (FAME's) - in Europe mostly RME (Rapeseed methyl ester) - are used in several countries as alternative biogene Diesel fuels in various blending ratios with fossil fuels (Bxx). Questions often arise about the influences of these biocomponents on the modern exhaust aftertreatment systems and especially on the regeneration of Diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: passive regenerations: DOC + CSF; CSF alone, active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of regulated and unregulated emission components (nanoparticles & FTIR) were conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot.
Technical Paper

DPF's Regeneration Procedures and Emissions with RME Blend Fuels

2012-04-16
2012-01-0844
The fatty acid methyl esters (FAME's) - in Europe mostly RME (Rapeseed methyl ester) - are used in several countries as alternative biogene diesel fuels in various blending ratios with fossil fuels (Bxx). Questions often arise about the influences of these biocomponents on the modern exhaust aftertreatment systems and especially on the regeneration of diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: - passive regenerations: DOC + CSF; CSF alone, and - active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of regulated and unregulated emission components (nanoparticles & FTIR) were conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot.
Technical Paper

Influences of Different Exhaust Filter Configurations on Emissions of a 2-Stroke Scooter Peugeot TSDI

2011-09-11
2011-24-0203
Exhaust emissions measurements of a small 2-S Scooter Peugeot TSDI*), 50cc with different particle filters have been performed in this present work according to the measuring procedures, which were established in the previous research in the Swiss Scooter Network, [1, 2, 3, 4, 5, 6, 7, 8, 9]. The investigated particle filtration materials were supplied from different manufacturers as samples without specifications and they were applied by the research laboratory in a special muffler able to be taken apart. The investigated scooter represented a modern (2002) 2-stroke technology with direct injection, with oxidation catalyst and with injection of the lube oil to the intake air. Since there is a special concern about the particle emissions of the small engines, the particle mass and nanoparticle measurements were systematically carried out. The nanoparticulate emissions were measured by means of SMPS (CPC) and NanoMet*).
Technical Paper

Comparative Studies of Particles Deposited in Diesel Particulate Filters Operating with Biofuel, Diesel Fuel and Fuel Blends

2011-09-11
2011-24-0102
Macroscopic studies and scanning electron microscope (SEM), as well as transmission electron microscope (TEM) research were carried out to investigate the nature and properties of particulate matter (PM) deposited in three diesel particulate filters (DPFs) operating with different fuels: 100% rapeseed methyl ester (RME100), a blend of 20% RME and 80% diesel (RME20), as well as 100% diesel (RME0). The DPFs were catalytically coated with V₂O₅/TiO₂. The PM deposits were either extracted from sectioned DPFs or studied "in situ," as deposited. In the RME100-DPF, the lowest soot and highest ash depositions are found. The higher amount of ash in RME100-DPF, as well as the higher participation of the element Ca in the ash from this filter, indicates that in addition to lubricating oil, the RME fuel contributes also to ash formation. Ash is found accumulating in the plugged inlet channels only in RME100 and as a few tens of μm-thick layer on the channel walls of all three filters.
X