Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

In-Cylinder Mixing Rate Measurements and CFD Analyses

Gas-phase in-cylinder mixing was examined by two different methods. The first method for observing mixing involved planar Mie scattering measurements of the instantaneous number density of silicon oil droplets which were introduced to the in-cylinder flow. The local value of the number density was assumed to be representative of the local gas concentration. Because the objective was to observe the rate in which gas concentration gradients change, to provide gradients in number density, droplets were admitted into the engine through only one of the two intake ports. Air only flowed through the other port. Three different techniques were used in analyzing the droplet images to determine the spatially dependent particle number density. Direct counting, a filtering technique, and autocorrelation were used and compared. Further, numerical experiments were performed with the autocorrelation method to check its effectiveness for determination of particle number density.
Technical Paper

Injection Pressure Effects Upon Droplet Behavior in Transient Diesel Sprays

This paper reports on the investigation of injection pressure upon the droplet behavior in transient diesel sprays. Phase/Doppler results for a Diesel spray with a maximum fuel injection line pressure of 105 MPa are compared with previously acquired droplet size and velocity measurements for a Diesel spray with an injection pressure of 21 MPa. All measurements reported here were made in atmospheric conditions at a position near the nozzle. It is shown in these results that the droplet velocity and size profiles do maintain similarity despite the substantial change in injection pressure. Specific characteristics, for example, the appearance of subtle waves in the time-dependent spray data, are present in both data sets. Comparison of the measured droplet velocities and diameters with Weber number based stability criteria shows that increased injection pressure produces a higher percentage of droplets that are likely to breakup.
Technical Paper

Effects of Mixture Preparation Characteristics on Four-Stroke Utility Engine Emissions and Performance

A laboratory-based fuel mixture system capable of delivering a range of fuel/air mixtures has been used to observe the effects of differing mixture characteristics on engine combustion through measurement and analysis of incylinder pressure and exhaust emissions. Fuel air mixtures studied can be classified into four different types: 1) Completely homogeneous fuel/air mixtures, where the fuel has been vaporized and mixed with the air prior to entrance into the normal engine induction system, 2) liquid fuel that is atomized and introduced with the air to the normal engine induction system, 3) liquid fuel that is atomized, and partially prevaporized but the air/fuel charge remains stratified up to introduction to the induction system, and 4) the standard fuel metering system. All tests reported here were conducted under wide open throttle conditions. A four-stroke, spark-ignited, single-cylinder, overhead valve-type engine was used for all tests.
Technical Paper

Measurement and Modeling of Thermal Flows in an Air-Cooled Engine

Control of the flow of thermal energy in an air-cooled engine is important to the overall performance of the engine because of potential effects on engine performance, durability, design, and emissions. A methodology is being developed for the assessment of thermal flows in air-cooled engines, which includes the use of cycle simulation and in-cylinder heat flux measurements. The mechanism for the combination of cycle simulation, the measurement of in-cylinder heat flux and wall temperatures, and comparison of predicted and measured heat flux in the methodology is presented. The methodology consists of both simulation and experimental phases. To begin, a one-dimensional gas dynamics code (WAVE) has been used in conjunction with a detailed in-cylinder flow and combustion model (IRIS) in order to simulate engine operation in a variety of operating conditions. The methods used to apply the model to the air-cooled engine case are described in detail.
Technical Paper

Emissions and Combustion Characteristics from Two Fuel Mixture Preparation Schemes in a Utility Engine

A laboratory-based fuel mixture preparation system has been developed that is capable of generating a wide range of fuel/air mixtures, including production of a premixed, prevaporized homogeneous charge, beginning with liquid gasoline fuel. This system has been developed to allow the study of the effects of fuel/air mixture preparation characteristics on engine combustion, in-cylinder pressure, and exhaust emissions. For the study to be described here, engine combustion behavior and emissions measurements were obtained for a wide range of A/F's with the fuel mixture preparation being produced in one case, by the stock carburetor operating with fixed throttle position, and the other case, with the custom-built system producing a homogeneous mixture (HM.) A four-stroke, spark-ignited, single-cylinder, overhead valve-type utility engine was used for all tests.
Technical Paper

Interactions and Main Effects with Auxiliary Injection in a Two-Stroke DI Diesel Engine

A two-stroke diesel engine was outfitted for operation with an electronic solenoid-controlled unit injector and an additional solenoid-controlled air-assisted injector at the inlet ports. Factorial experiments were designed in order to quantify, in a statistically representative manner, the effects of pilot (or ‘split’) and port auxiliary injection on main fuel combustion. Results indicated that interactions between experimental parameters (such as between pilot fuel quantity and pilot-to-main spacing), as well as main effects are important in analyzing auxiliary fuel injection. The bulk gas temperature at main injection was determined primarily by the experimental parameters acting independently of one another, which is a case where main effects only are important. Conversely, analysis of indicated specific fuel consumption and peak cylinder pressure involved interactions of the experimental parameters in both cases.
Technical Paper

Emissions and Performance of a Small L-Head Utility Engine Fueled with Homogeneous Propane/Air and Propane/Air/Nitrogen Mixture

The objective of this study was to observe and attempt to understand the effects of equivalence ratio and simulated exhaust gas recirculation (EGR) on the exhaust emissions and performance of a L-head single cylinder utility engine. In order to isolate these effects and limit the confounding influences caused by poor fuel mixture preparation and/or vaporization produced by the carburetor/intake port combination, the engine was operated on a premixed propane/air mixture. To simulate the effects of EGR, a homogeneous mixture of propane, air, and nitrogen was used. Engine measurements were obtained at the operating conditions specified by the California Air Resources Board (CARB) Raw Gas Method Test Procedure. Measurements included exhaust emissions levels of HC, CO, and NOx, and engine pressure data.
Technical Paper

Effects of Auxiliary Injection on Diesel Engine Combustion

Pilot injection and two other forms of auxiliary fuel introduction have been studied for their effects on diesel engine combustion and emissions. A two-stroke diesel has been equipped with an electronic solenoid-controlled unit injector such that the injector can operate with pilot injection. In addition, the engine has been fitted with experimental air-blast atomizing injectors in the inlet port and intake manifold. In-cylinder pressure, Bosch smoke, exhaust hydrocarbons, NO and NOx emissions measurements have been made for a range of engine conditions. In addition, two fuels have been tested to observe the effects of fuel blend on the auxiliary fuel behavior. In general, the effect of auxiliary fuel introduction is to reduce ignition delay and rate-of-pressure rise. This tends to result in a decrease in NO emissions. Unburned hydrocarbons and smoke tend to increase, although not in every case.
Technical Paper

Droplet Sizes and Velocities in a Transient Diesel Fuel Spray

Simultaneous droplet sizes and velocities were obtained for a transient diesel fuel spray in a quiescent chamber at atmospheric temperature and pressure. Instantaneous injection pressure, needle lift, and rate of injection were also measured, allowing calculation of the instantaneous nozzle discharge coefficient. Short-exposure still photographs were obtained at various chamber pressure and densities to further investigate this spray. Correlations between droplet size and velocity were determined at each crank angle to observe the detailed nature of the transient events occurring in this transient diesel fuel spray. As expected, peak mean and rms velocities are observed in the center of the spray. Measured average velocities are consistent with a calculated value, using the discharge coefficient for the nozzle and the known rate of fuel injection.
Technical Paper

An Optical Sensor for Spark-Ignition Engine Combustion Analysis and Control

An in-cylinder optical sensor has been developed and tested for use in spark-ignition engine combustion analysis and control, This sensor measures the luminous emission in the near infrared region. Results of these tests show good correlation between the measured luminosity and traditional combustion parameters, such as location and magnitude of maximum cylinder pressure, and location and magnitude of maximum heat release. Engine performance indicators, such as the indicated mean effective pressure (IMEP), also can be determined accurately with the measured luminosity combined with other engine operating parameters, e.g. intake manifold pressure. In-cylinder air-fuel ratio can be determined with accuracy over an ensemble of 100 cycles.
Technical Paper

Application of Conditional Sampling to the Study of Cyclic Variability in a Spark-Ignition Engine

Conditional sampling of cylinder-pressure data is used to investigate cyclic variability in a premixed-charge spark-ignited engine operating under fuel-lean conditions. Unlike straight ensemble averaging of pressure data, conditional sampling applies a set of constraints to the pressure data such that like combustion events can be identified and grouped together. Ensemble averaging of pressure data from an engine that exhibits significant cycle-to-cycle variation is shown to produce a mean pressure history that is not representative of the combustion process. Conditional sampling provides a means of identifying and analyzing the different groups of pressure histories and therefore the different types of combustion processes that occur in an engine that exhibits cyclic variability.