Refine Your Search

Topic

Search Results

Technical Paper

A Study of Flow Characteristics on the Diesel-Gasoline Dual-Fuel Combustion by 3-D CFD

2019-09-09
2019-24-0117
Various advanced combustion concepts, which can achieve higher thermal efficiency and emissions reduction, have been suggested as the emissions regulation gets stricter. Dual-fuel combustion that operates by using different fuels having both premixed and non-premixed combustion characteristics is one of the viable alternatives. In dual-fuel combustion, it is critical to understand air-fuel mixture distribution as it determines the ignition spot and following combustion phase. The fuel distribution in the engine is affected by various factors, such as chamber geometry, injection strategy or in-cylinder flow motion. Furthermore, among them, in-cylinder motion, usually described in terms of swirl or tumble motion, is mostly affected by in-cylinder port geometry. In this paper, 3-dimensional Computational Fluid Dynamics (CFD) was used to investigate the effect of in-cylinder flow motion in dual-fuel combustion. Two head and port geometries were used in the simulations.
Technical Paper

Numerical Analysis on the Effect of Piston Bowl Geometry in Gasoline-Diesel Dual-Fuel Combustion

2019-04-02
2019-01-1164
As emissions regulations become stricter, a variety of advanced combustion concepts that can reduce emissions with a higher thermal efficiency have been suggested. Dual-fuel combustion is one of the alternatives that has both premixed and non-premixed combustion characteristics. Knowing the effects of the mixture formation in dual-fuel combustion is important because it determines the ignition location and the following combustion phase. Hence, a thorough investigation on the related factors, such as the engine hardware or fuel spray, is required. Meanwhile, Computational Fluid Dynamics (CFD) is a good technique to visualize the in-cylinder phenomena and enables quantitative investigations into the detailed combustion characteristics. In this paper, a 3-dimensional CFD simulation was used to investigate the effects of the mixture formation in dual-fuel combustion. The combustion model consists of two parts.
Technical Paper

Effects of Bore-to-Stroke Ratio on the Efficiency and Knock Characteristics in a Single-Cylinder GDI Engine

2019-04-02
2019-01-1138
As a result of stringent global regulations on fuel economy and CO2 emissions, the development of high-efficiency SI engines is more urgent now than ever before. Along with advanced techniques in friction reduction, many researchers endeavor to decrease the B/S (bore-to-stroke) ratio from 1.0 (square) to a certain value, which is expected to reduce the heat loss and enhance the burning rate of SI engines. In this study, the effects of B/S ratios were investigated in aspects of efficiency and knock characteristics using a single-cylinder LIVC (late intake valve closing) GDI (gasoline direct injection) engine. Three B/S ratios (0.68, 0.83 and 1.00) were tested under the same mechanical compression ratio of 12:1 and the same displacement volume of 0.5 L. The head tumble ratio was maintained at the same level to solely investigate the effects of geometrical changes caused by variations in the B/S ratio.
Technical Paper

Impact of Grid Density on the LES Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions

2018-04-03
2018-01-0203
Large-eddy simulation (LES) applications for internal combustion engine (ICE) flows are constantly growing due to the increase of computing resources and the availability of suitable CFD codes, methods and practices. The LES superior capability for modeling spatial and temporal evolution of turbulent flow structures with reference to RANS makes it a promising tool for describing, and possibly motivating, ICE cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Despite the growing interest towards LES in the academic community, applications to ICE flows are still limited. One of the reasons for such discrepancy is the uncertainty in the estimation of the LES computational cost. This in turn is mainly dependent on grid density, the CFD domain extent, the time step size and the overall number of cycles to be run. Grid density is directly linked to the possibility of reducing modeling assumptions for sub-grid scales.
Technical Paper

A Quasi-Dimensional Model for Prediction of In-Cylinder Turbulence and Tumble Flow in a Spark-Ignited Engine

2018-04-03
2018-01-0852
Improving fuel efficiency and emission characteristics are significant issues in engine research. Because the engine has complex systems and various operating parameters, the experimental research is limited by cost and time. One-dimensional (1D) simulation has attracted the attention of researchers because of its effectiveness and relatively high accuracy. In a 1D simulation, the applied model must be accurate for the reliability of the simulation results. Because in-cylinder turbulence mainly determines the combustion characteristics, and mean flow velocity affects the in-cylinder heat transfer and efficiency in a spark-ignited (SI) engine, a number of sophisticated models have been developed to predict in-cylinder turbulence and mean flow velocity. In particular, tumble is a significant factor of in-cylinder turbulence in SI engine.
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

2017-09-04
2017-24-0040
The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
Technical Paper

A Study on the Refinement of Turbulence Intensity Prediction for the Estimation of In-Cylinder Pressure in a Spark-Ignited Engine

2017-03-28
2017-01-0525
The role of 1D simulation tool is growing as the engine system is becoming more complex with the adoption of a variety of new technologies. For the reliability of the 1D simulation results, it is necessary to improve the accuracy and applicability of the combustion model implemented in the 1D simulation tool. Since the combustion process in SI engine is mainly determined by the turbulence, many models have been concentrating on the prediction of the evolution of in-cylinder turbulence intensity. In this study, two turbulence models which can resemble the turbulence intensity close to that of 3D CFD tool were utilized. The first model is dedicated to predicting the evolution of turbulence intensity during intake and compression strokes so that the turbulence intensity at the spark timing can be estimated properly. The second model is responsible for predicting the turbulence intensity of burned and unburned zone during the combustion process.
Technical Paper

Study of LES Quality Criteria in a Motored Internal Combustion Engine

2017-03-28
2017-01-0549
In recent years, Large-Eddy Simulation (LES) is spotlighted as an engineering tool and severe research efforts are carried out on its applicability to Internal Combustion Engines (ICEs). However, there is a general lack of definitive conclusions on LES quality criteria for ICE. This paper focuses on the application of LES quality criteria to ICE and to their correlation, in order to draw a solid background on future LES quality assessments for ICE. In this paper, TCC-III single-cylinder optical engine from University of Michigan is investigated and the analysis is conducted under motored condition. LES quality is mainly affected by grid size and type, sub-grid scale (SGS) model, numeric schemes. In this study, the same grid size and type are used in order to focus on the effect on LES quality of SGS models and blending factors of numeric scheme only.
Technical Paper

Study on the Effect of Injection Strategies on Particulate Emission Characteristics under Cold Start Using In-cylinder Visualization

2016-04-05
2016-01-0822
Due to the direct injection of fuel into a combustion chamber, particulate emission is a challenge in DISI engines. Specifically, a significant amount of particulate emission is produced under the cold start condition. In this research, the main interest was to investigate particulate emission characteristics under the catalyst heating condition because it is one of the significant particulate-emissionproducing stages under the cold start condition. A single-cylinder optically accessible engine was used to investigate the effect of injection strategies on particulate emission characteristics under the catalyst heating condition. The split injection strategy was applied during intake stroke with various injection pressures and injection timings. Using luminosity analysis of the soot radiation during combustion, the particulate formation characteristics of each injection strategy were studied. Moreover, the factors that affect PM formation were analyzed via fuel injection visualization.
Technical Paper

Numerical Investigation of Soot Emission in Direct-Injection Spark-Ignition Engines Using a Detailed Soot Model Framework

2016-04-05
2016-01-0580
The soot emission in direct-injection spark-ignition engines under various operating conditions was numerically investigated in the present study. A detailed soot model was used to resolve the physical soot process that consists of polycyclic aromatics hydrocarbon (PAH) formation and soot particle dynamics. The primary propagating flame in partially-premixed field was described by G-equation model, and the concentrations of burned species as well as PAH behind of the flame front were determined from the laminar flamelet library that incorporates the PAH chemical mechanism. The particle dynamics in post-flame region include nucleation, surface growth, coagulation, and oxidation were modeled by method of moments. To improve the model predictability, a gasoline surrogate model was proposed to match the real fuel properties, and the input of droplet size distribution of fuel spray was obtained from Phase-Doppler Particle Analyzer.
Technical Paper

Numerical Study on the Multiple Injection Strategy in Diesel Engines using a Modified 2-D Flamelet Model

2015-09-06
2015-24-2406
The flamelet model is a widely used combustion model that demonstrates a good prediction of non-premixed combustion. In this model, the chemical time scales are considered to be smaller compared to those of the turbulence, which allows the heat and mass transfer equation to be decoupled from the flow equation. However, the model's dependency on the mixture fraction limits the combustion analysis to a single injection. To overcome this limitation, a two dimensional flamelet model, which uses two mixture fraction variables, was introduced to represent the non-premixed combustion of multiple injections. However, the model's computational time drastically increased due to the expansion of the solution domain. Thus, a modified 2-D flamelet model was introduced to reduce the computational time of the two dimensional flamelet model.
Technical Paper

Characteristics of Diesel Engine Noise According to EGR Rate Change during Transient Operation

2015-06-15
2015-01-2296
Diesel engine noise is classified into mechanical noise, flow dynamic noise and combustion noise. Among these, combustion noise level is higher than the others due to the high compression ratio of diesel combustion and auto ignition. The injected fuel is mixed with air in the ignition delay process, followed by simultaneous ignition of the premixed mixture. This process results in a rapid pressure rise, which is the main source of combustion noise. The amount of fuel burned during premixed combustion is mainly affected by the ignition delay. The exhaust gas recirculation (EGR) rate has an impact on ignition delay, and thus, it influences the combustion noise characteristics. Therefore, during the transient state, the combustion noise characteristics change as the EGR rate deviates from the target value. In this study, the effect of the EGR rate deviation during the transient state of the combustion noise is examined. A 1.6 liter diesel engine with a VGT was used for the experiment.
Technical Paper

An Experimental Investigation of Injection and Operating Strategies on Diesel Single Cylinder Engine under JP-8 and Dual-Fuel PCCI Combustion

2015-04-14
2015-01-0844
The alternative fuel jet propellant 8 (JP-8, NATO F-34) can be used as an auto-ignition source instead of diesel. Because it has a higher volatility than diesel, it provides a better air-fuel premixing condition than a conventional diesel engine, which can be attributed to a reduction in particulate matter (PM). In homogeneous charged compression ignition (HCCI) or dual-fuel premixed charge compression ignition (PCCI) combustion or reactivity controlled compression ignition (RCCI), nitrogen oxides (NOx) can also be reduced by supplying external exhaust gas recirculation (EGR). In this research, the diesel and JP-8 injection strategies under conventional condition and dual-fuel PCCI combustion with and without external EGR was conducted. Two tests of dual-fuel (JP-8 and propane) PCCI were conducted at a low engine speed and load (1,500 rpm/IMEP 0.55 MPa). The first test was performed by advancing the main injection timing from BTDC 5 to 35 CA to obtain the emissions characteristics.
Technical Paper

Study on the Correlation between the Heat Release Rate and Vibrations from a Diesel Engine Block

2015-04-14
2015-01-1673
In this study, a correlation between the maximum heat release rate and vibrations from a diesel engine block was derived, and a methodology to determine the maximum heat release rate is presented. To investigate and analyze the correlation, an engine test and an actual road vehicle test were performed using a 1.6-L diesel engine. By varying the engine speed, load and main injection timing, the vibration signals from the engine block were measured and analyzed using a continuous wavelet transform (CWT). The results show that the maximum heat release rate has a strong correlation with the magnitude of the vibrations. A specific bandwidth, the vibration signals between 0.3∼1.5 kHz, was affected by the variation in the heat release rate. The vibrations excited by combustion lasted over 50 CAD; however, the signals during the period of 35 CAD after the start of injection had a dominant effect on the maximum heat release rate.
Technical Paper

The Efficiency and Emission Characteristics of Dual Fuel Combustion Using Gasoline Direct Injection and Ethanol Port Injection in an SI Engine

2014-04-01
2014-01-1208
Ethanol, one of the most widely used biofuels, has the potential to increase the knock resistance of gasoline and decrease harmful emissions when blended with gasoline. However, due to the characteristics of ethanol, a trade-off relationship between knock tolerance and BSFC exists which is balanced by the blending ratio of gasoline and ethanol. Furthermore, in a spark-ignited engine, it is reported that the blending ratio that maximizes thermal efficiency varies based on the engine operating conditions. Therefore, an injection system that can deliver gasoline and ethanol separately is needed to fully exploit the benefit of ethanol. In this study, PFI injectors and a DI injector are used to deliver ethanol and gasoline, respectively. Using the dual fuel injection system, the compression ratio was increased from 9.5 to 13.3, and the knock mitigation characteristics at the full load condition were examined.
Technical Paper

Numerical Analysis of Pollutant Formation in Direct-Injection Spark-Ignition Engines by Incorporating the G-Equation with a Flamelet Library

2014-04-01
2014-01-1145
Direct-injection spark-ignition (DISI) engines are regarded as a promising technology for the reduction of fuel consumption and improvement of engine thermal efficiency. However, due to direct injection, the shortened fuel-air mixing duration leads to a spatial gradient of the equivalence ratio, and these locally rich regions cause the formation of particulate matter. In the current study, numerical investigations on pollutant formation in a DISI engine were performed using combined flamelet models for premixed and diffusion flames. The G-equation model for partially premixed combustion was improved by incorporating the laminar flamelet library. Gasoline fuel was represented as a ternary mixture of gasoline surrogate and its laminar flame speeds were obtained under a wide range of engine operating conditions.
Technical Paper

A Study of Emissions Reduction through Dual-Fuel Combustion with Propane in a Compression Ignition Engine

2013-10-14
2013-01-2669
Novel Diesel combustion concepts such as premixed charge compression ignition (PCCI) and reactivity controlled compression ignition (RCCI) promise lower NOx and PM emissions than those of conventional Diesel combustion. RCCI, which can be implemented using low-reactivity fuels such as gasoline or gases and high-reactivity fuels such as Diesel, has the potential to achieve extremely low emissions and improved thermal efficiency. However, to achieve RCCI combustion, a higher boost pressure than that of a conventional engine is required because a high EGR rate and a lean mixture are necessary to achieve a low combustion temperature. However, higher boost pressures can cause damage to intake systems. In this research, the addition of gaseous fuel to a CI engine is investigated to reduce engine emissions, mainly NOx and PM emissions, with the same IMEP level. Two different methods were evaluated.
Technical Paper

Study on the Application of the Waste Heat Recovery System to Heavy-Duty Series Hybrid Electric Vehicles

2013-04-08
2013-01-1455
A waste heat recovery system is applied to a heavy-duty series hybrid electric vehicle. The engine in a series hybrid electric vehicle can operate at steady state for most of the time because the engine and drivetrain are decoupled, providing the waste heat recovery system with a steady state heat source. Thus, it is possible to optimize the waste heat recovery system design while maximizing the amount of useful energy converted in the system. To realize such a waste heat recovery system, the Rankine steam cycle is selected for the bottoming cycle. The heat exchanger is implemented as a quasi-1D simulation model to calculate the accurate quantity of recovered energy and to determine the working fluid state. The optimal geometric characteristics of the heat exchanger and the efficiency are considered according to the working fluid. The Rankine steam cycle model is constructed, and the output power is calculated.
Journal Article

The Measurement of Penetration Length of Diesel Spray by Using Background Oriented Schlieren Technique

2011-04-12
2011-01-0684
The measurement of spray penetration length is one of crucial tasks for understanding the characteristics of diesel spray and combustion. For this reason, many researchers have devised various measurement techniques, including Mie scattering, schlieren photography, and laser induced exciplex fluorescence (LIEF). However, the requirements of expensive lasers, complicated optics, delicate setups, and tracers that affect fuel characteristics have been disadvantages of previous techniques. In this study, the background-oriented schlieren (BOS) technique is employed to measure the vapor penetration length of diesel spray for the first time. The BOS technique has a number of benefits over the previous techniques because of its quantitative, non-intrusive nature which does not require lasers, mirrors, optical filters, or fuel tracers.
Technical Paper

Study of a Stratification Effect on Engine Performance in Gasoline HCCI Combustion by Using the Multi-zone Method and Reduced Kinetic Mechanism

2009-06-15
2009-01-1784
A gasoline homogeneous charged compression ignition (HCCI) called the controlled auto ignition (CAI) engine is an alternative to conventional gasoline engines with higher efficiency and lower emission levels. However, noise and vibration are currently major problems in the CAI engine. The problems result from fast burning speeds during combustion, because in the CAI engine combustion is controlled by auto-ignition rather than the flame. Thus, the ignition delay of the local mixture has to vary according to the location in the combustion chamber to avoid noise and vibration. For making different ignition delays, stratification of temperature or mixing ratio was tested in this study. In charge stratification, which determines the difference between the start of combustion among charges with different properties, two kinds of mixtures with different properties flow into two intake ports.
X