Refine Your Search

Topic

Search Results

Technical Paper

Simulation Study of Sparked-Spray Induced Combustion at Ultra-Lean Conditions in a GDI Engine

2024-04-09
2024-01-2107
Ultra-lean combustion of GDI engine could achieve higher thermal efficiency and lower NOx emissions, but it also faces challenges such as ignition difficulties and low-speed flame propagation. In this paper, the sparked-spray is proposed as a novel ignition method, which employs the spark to ignite the fuel spray by the cooperative timing control of in-cylinder fuel injection and spark ignition and form a jet flame. Then the jet flame fronts propagate in the ultra-lean premixed mixture in the cylinder. This combustion mode is named Sparked-Spray Induced Combustion (SSIC) in this paper. Based on a 3-cylinder 1.0L GDI engine, a 3D simulation model is established in the CONVERGE to study the effects of ignition strategy, compression ratio, and injection timing on SSIC with a global equivalence ratio of 0.50. The results show it is easier to form the jet flame when sparking at the spray front because the fuel has better atomization and lower turbulent kinetic energy at the spray front.
Technical Paper

Combustion and HC&PN Emission Characteristics at First Cycle Starting of Gasoline Engine under Lean Burn Based on Active Pre-Chamber

2024-04-09
2024-01-2108
As a novel ignition technology, pre-chamber ignition can enhance ignition energy, promote flame propagation, and augment turbulence. However, this technology undoubtedly faces challenges, particularly in the context of emission regulations. Of this study, the transient characteristics of combustion and emissions in a hybrid electric vehicle (HEV) gasoline engine with active pre-chamber ignition (PCI) under the first combustion cycle of quick start are focused. The results demonstrate that the PCI engine is available on the first cycle for lean combustion, such as lambda 1.6 to 2.0, and exhibit particle number (PN) below 7×107 N/mL at the first cycle. These particles are predominantly composed of nucleation mode (NM, <50 nm) particles, with minimal accumulation mode (AM, >50 nm) particles.
Technical Paper

NOx Emission Characteristics of Active Pre-Chamber Jet Ignition Engine with Ammonia Hydrogen Blending Fuel

2023-10-31
2023-01-1629
Ammonia is employed as the carbon-free fuel in the future engine, which is consistent with the requirements of the current national dual-carbon policy. However, the great amount of NOx and unburned NH3/H2 in the exhaust emissions is produced from combustion of ammonia and is one kind of the most strictly controlled pollutants in the emission regulation. This paper aims to investigate the NOx and unburned NH3/H2 generative process and emission characteristics by CFD simulation during the engine combustion. The results show that the unburned ammonia and hydrogen emissions increase with an increase of equivalence ratio and hydrogen blending ratio. In contrast, the emission concentrations of NOx, NO, and NO2 decrease with the increasing of equivalence ratio, but increase with hydrogen blending ratio rising. The emission concentration of N2O is highly sensitive to the O/H group and temperature, and it is precisely opposite to that of NO and NO2.
Technical Paper

Combustion and Emission Characteristics of Ammonia Jet Flames, Based on a Controllable Activated Thermal Atmosphere

2023-10-31
2023-01-1645
Ammonia is a new type of carbon-free fuel with low cost, clean and safe. The research and application of zero-carbon fuel internal combustion engines has become the mainstream of future development. However, there still exist problems should be solved in the application of ammonia fuel. Due to the lower flame laminar speed and higher ignition temperature, ammonia may have unstable combustion phenomena. In this work, the characteristics of ammonia combustion have been investigated, based on controllable thermal activated atmosphere burner. The ignition delay has been used to analyze the ammonia combustion characteristics. With the increase in co-flow temperature, the ignition delay of ammonia/air has an obvious decline. In order to investigate the emission characteristics of ammonia, CHEMKIN is used to validate the different chemical reaction mechanisms and analyse the ammonia emissions.
Technical Paper

Numerical Investigations on Formation Process of N2O in Ammonia/Hydrogen Fueled Pre-Chamber Jet Ignition Engine

2023-10-30
2023-01-7023
Ammonia is used as the carbon-free fuel in the engine, which is consistent with the requirements of the current national dual-carbon policy. However, the great amount of NOx in the exhaust emissions is produced after combustion of ammonia and is one kind of the most tightly controlled pollutants in the emission regulation. Nitrous Oxide (N2O) is a greenhouse gas with a very strong greenhouse effect, so that the N2O emissions needs to be paid close attention. In this paper, the CFD simulation of the N2O formation and emission characteristics during combustion is carried in the ammonia/hydrogen fueled pre-chamber jet ignition engine.
Technical Paper

Simulation Study on the Effect of In-Cylinder Water Injection Mass on Engine Combustion and Emissions Characteristics

2023-10-30
2023-01-7004
The rapid development of the automobile industry has brought energy and environmental issues that scholars are increasingly concerning about. Improving efficiency and reducing emissions are currently two hot topics in the internal combustion engine industry. Direct water injection technology (DWI) can effectively reduce the cylinder temperature, which is due to the absorption of the heat by the injecting liquid water. In addition, lower temperature in the cylinder will reduce the formation of NO. In this paper, a CFD simulation of DWI application in a lean-burning single-cylinder engine with pre-chamber jet ignition was carried out. And the engine was experimentally tested for the simulation model validation. And then the effect of DWI strategy with different injecting water mass on the combustion and emissions characteristics are analyzed. Physically, injected water not only absorbs heat but also provides heat insulation.
Technical Paper

Particulate Emission Characteristics and GPF Performance of WLTC Cycle based on Exhaust Gas Simulator

2023-09-29
2023-32-0097
GDI engine has gained much popularity in vehicle market with its high thermal efficiency. However, because of higher particulate emissions, it becomes harder for GDI engines to fulfill the iteration of emission regulations in various countries. As a result, Gasoline Particulate Filter (GPF) has received more and more attention and applications. It is important to study the particulate emission and GPF performance especially for transient cycles. With a self-designed test bench with burner named Exhaust Gas Simulator, a transient control strategy to simulate the exhaust state of the WLTC cycle has been developed and achieved a fast and stable ash accumulation rate. Three levels of ash loading, in terms of 0g/L, 5g/L and 35g/L, were accumulated on respective GPF for different aging degrees with this test bench. The effect of ash loading on GPF performance was investigated.
Technical Paper

Knock Inhibition in Hydrogen Fueled Argon Power Cycle Engine with a Higher Compression Ratio by Water Direct Injection at Late Exhaust Stroke

2023-04-11
2023-01-0227
Hydrogen-fueled Argon Power Cycle engine is a novel concept for high efficiency and zero emissions, which replaces air with argon/oxygen mixtures as working fluid. However, one major challenge is severe knock caused by elevated in-cylinder temperature resulting from high specific heat ratio of Argon. A typical knock-limited compression ratio is around 5.5:1, which limits the thermal efficiency of Argon Power Cycle engines. In this article, preliminary experimental research on the effect of water direct injection at late exhaust stroke is presented at 1000 r/min with IMEP ranging from 0.3~0.6 MPa. Results show that, with temperature-reducing effect of water evaporation, knock is greatly inhibited and the engine can run normally at a higher compression ratio of 9.6:1. Water injected at the exhaust stroke minimizes its reducing effect on the specific heat ratio of the working fluid during the compression and expansion strokes.
Technical Paper

A Comparative Study on the Ignition Mechanism of Multi-site Ignition and Continuous Discharge Strategy

2021-09-21
2021-01-1162
Advanced combustion engines dominate all automotive applications. Future high efficiency clean combustion engines can contribute significantly to sustainable transportation. Effective ignition strategies are studied to enable lean and diluted combustion under considerably high-density mixture and strong turbulences, for improving the efficiency and emissions of future combustion engines. Continuous discharge and multi-site ignition strategies have been proved to be effective to stabilize the combustion process under lean and EGR diluted conditions. Continuous discharge strategy uses a traditional sparkplug with a single spark gap and multiple ignition coil packs. The ignition coil packs operate under a specific time offset to realize a continuous discharge process with a prolonged discharge duration. Multi-site ignition strategy also uses multiple ignition coil packs.
Technical Paper

The Effect of Tuning PMSM Torque to Track Engine Torque on Speed Fluctuation of Range Extender

2021-04-06
2021-01-0784
REEV (Range-Extended Electric Vehicle) can avoid the mileage anxiety of BEV (Battery Electric Vehicle). Nevertheless, RE (Range Extender) for passenger cars prefers to use ICE (Internal Combustion Engine) with smaller displacement and lower cylinder number, which is usually with a worse vibration performance at low speeds. As RE only outputs electricity, it provides the possibility to optimize NVH (Noise, Vibration, and Harshness) of the engine by PMSM (Permanent Magnet Synchronous Motor). By real-time control, the electromagnetic torque of PMSM can track the shaft torque fluctuation during engine strokes, especially the combustion stroke. When the instability and rolling torque of RE could be suppressed, NVH performance of RE can be improved. This paper presents simulation research on speed fluctuation suppression for RE engine based on dynamic torque compensation by controlling a PMSM.
Technical Paper

Carbon Emission Research of Taxi Fleet from ICEV to BEV (Shanghai Case)

2021-01-22
2021-01-5009
Based on the life cycle assessment method, this paper takes Shanghai taxi fleet as the research objective (traditional fuel vehicle (ICEV) and battery electric vehicle (BEV)). Under the condition of Shanghai energy structure, and combined with the actual application scenario of Shanghai taxi fleet, the study and prediction of carbon emission is carried out from three stages of manufacture, use and recycle. The research results show that: in the life cycle, under the current energy structure and battery technology of the taxi fleet in Shanghai, the carbon emission of BEV and ICEV will be at the same level at the mileage of 50,000 km. With the adjustment of energy structure, the progress of battery technology and the increase of the proportion of battery electric taxi fleet, the overall carbon emission of Shanghai taxi fleet will be reduced significantly.
Technical Paper

Research on Life Cycle of Typical Passenger Vehicles Based on Energy Structure

2020-12-14
2020-01-5187
Based on the principle of carbon footprint, this paper selects typical passenger cars, such as internal combustion engine vehicles (ICEV), plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) in the market of China as the research objects, and compares the energy consumption and carbon emissions of the three vehicle models in the whole life cycle for three major stages of manufacturing, driving and recycling in three representative cities. The results show that the manufacturing energy consumption of BEV is 5 times of HEV and 10 times of ICEV. For the BEV, only after driving a certain mileage it can be a less the unit energy consumption and emissions than ICEV. The whole life cycle carbon emissions of passenger cars with different power types is not only related to mileage, but also related to the energy structure of local electric power supply.
Technical Paper

In Cycle Pre-Ignition Diagnosis and Super-Knock Suppression by Employing Ion Current in a GDI Boosted Engine

2020-04-14
2020-01-1148
In this paper, a low-speed pre-ignition (LSPI) diagnostic strategy is designed based on the ion current signal. Novel diagnostic and re-injection strategies are proposed to suppress super-knock induced by pre-ignition within the detected combustion cycle. A parallel controller system that integrates a regular engine control unit (ECU) and CompactRIO (cRIO) from National Instruments (NI) is employed. Based on this system, the diagnostic and suppression strategy can be implemented without any adaptions to the regular ECU. Experiments are conducted on a 1.5-liter four-cylinder, turbocharged, direct-injected gasoline engine. The experimental results show two kinds of pre-ignition, one occurs spontaneously, and the other is induced by carbon deposits. Carbon deposits on the spark plug can strongly interfere with the ion current signal. By applying the ion current signal, approximately 14.3% of spontaneous and 90% of carbon induced pre-ignition cycles can be detected.
Technical Paper

Characteristics of Transient NOx Emissions of HEV under Real Road Driving

2020-04-14
2020-01-0380
To meet the request of China National 6b emission regulations which will be officially implemented in China, firstly including the RDE emission test limits, the transient emissions on real road condition are paid more attention. A non-plug-in hybrid light-duty gasoline vehicles (HEV) sold in the Chinese market was selected to study real road emissions employed fast response NOx analyzer from Cambustion Ltd. with a sampling frequency of 100Hz, which can measure the missing NO peaks by standard RDE gas analyzer now. Emissions from PEMS were also recorded and compared with the results from fast response NOx analyzer. The concentration of NOx emissions before and after the Three Way Catalyst (TWC) of the hybrid vehicle were also sampled and analyzed, and the working efficiency of the TWC in real road driving process was investigated.
Technical Paper

Study on Diesel Atomization Characteristics for Hot Exhaust Gas Burner

2019-12-19
2019-01-2238
A hot exhaust gas burner system is applied to break through the limitations of the traditional diesel engine bench. Sufficient atomization is needed to realize spark ignition in a low-pressure burner system. Hence, the design of the atomization system is studied both experimentally and numerically. Through the reasonable optimization of the nozzle diameter, the air assist pressure, the angle among the four nozzles of four V-structures as well as the diameter and the angle of co-flow holes, an even distribution of small diesel droplets in the ignition area of the burner is realized. Consequently, diesel spray can be spark ignited in a low-pressure burner system, which can simulate the diesel exhaust. And the DPF can be installed downstream of the burner to quickly analyze the effect of ash accumulation on the DPF.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
Technical Paper

Numerical Study of Intake Manifold Water Injection on Characteristics of Combustion and Emissions in a Heavy-Duty Natural Gas Engine

2019-04-02
2019-01-0562
The performances of heavy-duty natural gas engines have been limited by combustion temperature and NOx emissions for a long time. Recently, water injection technology has been widely considered as a technical solution in reducing fuel consumption and emissions simultaneously in both gasoline and diesel engines. This paper focuses on the impacts of intake manifold water injection on characteristics of combustion and emissions in a natural gas heavy-duty engine through numerical methods. A computational model was setup and validated with experimental data of pressure traces in a CFD software coupled with detailed chemical kinetics. The simulation was mainly carried out in low-speed and full-load conditions, and knock level was also measured and calculated by maximum amplitude of pressure oscillations (MAPO).
Technical Paper

A Study on the Combustion Characteristics of a Methane Jet Flame in a Pressurized Hot Vitiated Co-flow

2019-01-15
2019-01-0082
This work presents the study of the methane jet flame in a pressurized vitiated co-flow burner (PVCB). The lift-off length and the stabilization of the methane jet flame under different environment pressures, co-flow temperatures, co-flow rates and jet velocities have been studied, and a chemical numerical simulation based on Gri-mech 3.0 was analyzed as well. The results could provide theoretical supports for the research of natural gas engine combustion stabilization control to increase its thermal efficiency. The experimental results show that the lift-off length decreases obviously (104.22mm to76.14mm) with the increase of the environment pressure (1to1.5bar, 1073K) and temperature (119.34mm to 43.74mm from 1058K to 1118K, 1bar), meanwhile, it also increases with the increment of the co-flow rate and jet velocity.
Technical Paper

Auto-ignition Characteristics of Lubricant Droplets under Hot Co-Flow Atmosphere

2018-09-10
2018-01-1807
It has been revealed by researches that lubricant properties have a great effect on the low-speed pre-ignition (LSPI) frequency in downsizing turbocharged direct-injection engines which are developed for better fuel economy. Droplets of lubricant or lubricant-gasoline mixture are considered to be the potential pre-ignition sources. Those droplets fly into the combustion chamber and ignite the gasoline-air mixture. To study lubricant droplets fundamentally, a novel set of droplet auto-ignition system is designed based on a Dibble Burner for this experiment. Influences of metallic additive contents, viscosities, lubricant diluted with gasoline and waste lubricant on the ignition delay of droplets are investigated by testing 12 groups of lubricants or lubricant-gasoline mixture. The equivalent diameter of each droplet generated by micro-syringes is around 2.1 mm. The co-flow temperature varies from 1123 K to 1223 K, and the experiments are carried out at atmospheric pressure.
Technical Paper

Simulation of Intake Manifold Water Injection in a Heavy Duty Natural Gas Engine for Performance and Emissions Enhancement

2018-09-10
2018-01-1653
The present work discusses the effects of intake manifold water injection in a six-cylinder heavy duty natural gas (NG) engine through one-dimensional simulation. The numerical study was carried out based on GT-Power under different engine working conditions. The established simulation model was firstly calibrated in detail through the whole engine speed sweep under full load conditions before the model of intake manifold water injector was involved, and the calibration was based on experimental data. The intake manifold water injection mass was controlled through adjustment of intake water/gas (water/natural gas) ratio, a water/gas ratio swept from 0 to 4 was selected to investigate the effects of intake manifold water injection on engine performance and emissions characteristics. On the other hand, the enhancement potential of intake manifold water injection in heavy duty NG engine under lean and stoichiometric condition was also investigated by the alteration of air-fuel ratio.
X