Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Experimental and Numerical Analysis of a Swirled Fuel Atomizer for an Aftertreatment Diesel Burner

2023-08-28
2023-24-0106
Emission legislation for light and heavy duty vehicles is requiring a drastic reduction of exhaust pollutants from internal combustion engines (ICE). Achieving a quick heating-up of the catalyst is of paramount importance to cut down cold start emissions and meet current and new regulation requirements. This paper describes the development and the basic characteristics of a novel burner for diesel engines exhaust systems designed for being activated immediately at engine cold start or during vehicle cruise. The burner is comprised of a swirled fuel dosing system, an air system, and an ignition device. The main design characteristics are presented, with a detailed description of the atomization, air-fuel interaction and mixture formation processes. An atomizer prototype has been extensively analyzed and tested in various conditions, to characterize the resulting fuel spray under cold-start and ambient operating conditions.
Technical Paper

Numerical Simulation of Non-reacting Ducted Fuel Injection by Means of the Diffuse-Interface Σ-Y Atomization Model

2022-03-29
2022-01-0491
Ducted Fuel Injection (DFI) is a new technology recently developed with the aim of reducing soot emission formation in diesel compression ignition engines. DFI concept consists of the injection of fuel spray through a small duct located downstream of the injector nozzle leaving a certain gap, the so-called Stand-off distance. Currently, CFD modelers have investigated its performance using classical spray modeling techniques such as the Discrete Drops Method (DDM). However, as discussed in the literature, this type of technique is inappropriate when applied to dense jets as those occurring in diesel sprays, especially in the near-nozzle region (where the duct is placed). Therefore, considering a more appropriate modeling technique for such a problem is mandatory. In this research work, an Eulerian single-fluid diffuse-interface model called Σ-Y and implemented in the OpenFOAM framework is utilized for the simulation of non-reacting conditions.
Technical Paper

Numerical Simulations and Experimental Validation of an SCR System for Ultra Low NOx Applications

2021-09-21
2021-01-1222
Close-coupled aftertreatment systems (ATS) for automotive Diesel engines composed of DOC and SCR offer a significant potential in terms of pollutant emission control capability even with the introduction of more aggressive driving cycles and rigorous limits for type-approval tests. This is particularly important for incoming certification standards where the forecast is showing a trade-off towards ultra-low NOx emissions values. As the SCR system NOx conversion capability largely relies on both the UWS mixing device and on NOx sensors used to detect the actual NH3 slip and residual NOx concentration, developing numerical simulation tools for the analysis of the actual flow pattern and species concentration over peculiar sections of the exhaust system is crucial to support the ATS development process.
Technical Paper

Experimental and Numerical Analysis of Latest Generation Diesel Aftertreatment Systems

2019-09-09
2019-24-0142
A comprehensive experimental and numerical analysis of two state-of-the-art diesel AfterTreatment Systems (ATS) for automotive applications is presented in this work. Both systems, designed to fulfill Euro 6 emissions regulations standards, consist of a closed-coupled Diesel Oxidation Catalyst (DOC) followed by a Selective Catalytic Reduction (SCR) catalyst coated on a Diesel Particulate Filter (DPF), also known as SCR on Filter (SCRoF or SCRF). While the two systems feature the same Urea Water Solution (UWS) injector, major differences could be observed in the UWS mixing device, which is placed upstream of the SCRoF, whose design represents a crucial challenge due to the severe flow uniformity and compact packaging requirements.
Technical Paper

Experimental Analysis of Fuel and Injector Body Temperature Effect on the Hydraulic Behavior of Latest Generation Common Rail Injection Systems

2018-04-03
2018-01-0282
The present paper describes the effect of thermal conditions on the hydraulic behavior of Diesel common rail injectors, with a particular focus on low temperatures for fuel and injector body. The actual injection system thermal state can significantly influence both the injected quantity and the injection shape, requiring proper amendments to the base engine calibration in order to preserve the combustion efficiency and pollutant emissions levels. In particular, the introduction of the RDE (Real Driving Emission) test cycle widens the effective ambient temperature range for the homologation cycle, this way stressing the importance of the thermal effects analysis. An experimental test bench was developed in order to characterize the injector in an engine-like configuration, i.e. fuel pump, piping, common rail, pressure control system and injectors.
Technical Paper

A Methodology for the Estimation of Hole-to-Hole Injected Mass Based on Spray Momentum Flux Measurement

2017-03-28
2017-01-0823
In the present paper, a new methodology for the estimation of the mass delivered by a single hole of a GDI injector is presented and discussed. The GDI injector used for the activity featured a five-hole nozzle characterized by three holes with the same diameter and two holes with a larger diameter. The different holes size guarantees a significant difference in terms of mass flow. This new methodology is based on global momentum flux measurement of each single plume and on its combination with the global mass measurement made with the gravimetric principle. The momentum flux is measured by means of a dedicated test bench that detects the impact force of the single spray plume at different distances. The sensing device is moved in different positions and, in each point, the force trace averaged over several injection events is acquired. The global mass delivered by the injector is measured by collecting and weighing the fuel flown during a defined number of consecutive injections.
Journal Article

Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies

2016-04-05
2016-01-0563
The selection and tuning of the Fuel Injection System (FIS) are among the most critical tasks for the automotive diesel engine design engineers. In fact, the injection strongly affects the combustion phenomena through which controlling a wide range of related issues such as pollutant emissions, combustion noise and fuel efficiency becomes feasible. In the scope of the engine design optimization, the simulation is an efficient tool in order to both predict the key performance parameters of the FIS, and to reduce the amount of experiments needed to reach the final product configuration. In this work a complete characterization of a solenoid ballistic injector for a Light-Duty Common Rail system was therefore implemented in a commercially available one-dimensional computational software called GT-SUITE. The main phenomena governing the injector operation were simulated by means of three sub-models (electro-magnetic, hydraulic and mechanical).
Technical Paper

Analysis of the Mixture Formation at Partial Load Operating Condition: The Effect of the Throttle Valve Rotational Direction

2015-09-06
2015-24-2410
In the next incoming future the necessity of reducing the raw emissions leads to the challenge of an increment of the thermal engine efficiency. In particular it is necessary to increase the engine efficiency not only at full load but also at partial load conditions. In the open literature very few technical papers are available on the partial load conditions analysis. In the present paper the analysis of the effect of the throttle valve rotational direction on the mixture formation is analyzed. The engine was a PFI 4-valves motorcycle engine. The throttle valve opening angle was 17.2°, which lays between the very partial load and the partial load condition. The CFD code adopted for the analysis was the FIRE AVL code v. 2013.2. The exhaust, intake and compression phases till TDC were simulated: inlet/outlet boundary conditions from 1D simulations were imposed.
Technical Paper

Spray Analysis of the PFAMEN Injector

2013-09-08
2013-24-0036
In an earlier study, a novel type of diesel fuel injector was proposed. This prototype injects fuel via porous (sintered) micro pores instead of via the conventional 6-8 holes. The micro pores are typically 10-50 micrometer in diameter, versus 120-200 micrometer in the conventional case. The expected advantages of the so-called Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN) injector are lower soot- and CO2 emissions. However, from previous in-house measurements, it has been concluded that the emissions of the porous injector are still not satisfactory. Roughly, this may have multiple reasons. The first one is that the spray distribution is not good enough, the second one is that the droplet sizing is too big due to the lack of droplet breakup. Furthermore air entrainment into the fuel jets might be insufficient. All reasons lead to fuel rich zones and associated soot formation.
Technical Paper

Evaluation of Diesel Spray Momentum Flux in Transient Flow Conditions

2010-10-25
2010-01-2244
In the present paper, a detailed numerical and experimental analysis of a spray momentum flux measurement device capability is presented. Particular attention is devoted to transient, engine-like injection events in terms of spray momentum flux measurement. The measurement of spray momentum flux in steady flow conditions, coupled with knowledge of the injection rate, is steadily used to estimate the flow mean velocity at the nozzle exit and the extent of flow cavitation inside the nozzle in terms of a velocity reduction coefficient and a flow section reduction coefficient. In the present study, the problem of analyzing spray evolution in short injection events by means of jet momentum flux measurement was approached. The present research was based on CFD-3D analysis of the spray-target interaction in a momentum measurement device.
Journal Article

Experimental and Numerical Evaluation of Diesel Spray Momentum Flux

2009-11-02
2009-01-2772
In the present work, an experimental and numerical analysis of high pressure Diesel spray evolution is carried out in terms of spray momentum flux time history and instantaneous injection rate. The final goal of spray momentum and of injection rate analyses is the evaluation of the nozzle outlet flow characteristics and of the nozzle internal geometry possible influences on cavitation phenomena, which are of primary importance for the spray evolution. Further, the evaluation of the flow characteristics at the nozzle exit is fundamental in order to obtain reliable boundary conditions for injection process 3D simulation. In this paper, spray momentum data obtained in ambient temperature, high counter-pressure conditions at the Perugia University Spray Laboratory are presented and compared with the results of 3D simulations of the momentum rig itself.
Technical Paper

Application of a Fully Flexible Electro-Hydraulic Camless System to a Research SI Engine

2009-09-13
2009-24-0076
This paper presents the further development of an electro-hydraulic camless valve actuation system for internal combustion engines. The system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. Valve timing and duration are controlled by a pilot stage governed by a solenoid, fast-acting, three-way valve. Valve lift is controlled by varying the oil pressure of the power stage. The system exploits an energy recovery working principle that plays a significant role in reducing the power demand of the whole valve train. In the present paper a new HVC actuator design is presented and its performances in terms of valve lift profile, repeatability and landing are discussed. Experimental data obtained by the application of the HVC system to a motored, single-cylinder research engine have been used to support the numerical evaluation of the potentialities of non-conventional valve actuation in engine part-load operation.
Technical Paper

Experimental and Numerical Study of an Electro-Hydraulic Camless VVA System

2008-04-14
2008-01-1355
This paper presents the current research activity about an electro-hydraulic camless valve actuation system for internal combustion engines. From a general point of view, this system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. In the HVC system, the valve actuation timing and duration are controlled by varying the driving signal of the pilot stage, which is governed by a solenoid, fast-acting, three-way valve; the valve lift is adjusted by varying the oil pressure of the power stage. This system uses hydraulic forces to open the engine valve while a mechanical spring is used for its closure. The HVC key element is a spool valve, which operates as a three way / three position valve. This element is designed in order to ensure the synchronization of its own motion with that of the poppet valve mass-spring system.
Technical Paper

Development of an Electro-Hydraulic Camless VVA System

2007-09-16
2007-24-0088
Among variable valve actuation systems, fully flexible systems such as camless devices are the most attractive valvetrains for near-future engines. This paper presents a research activity about an electro-hydraulic camless system for internal combustion engines. The Hydraulic Valve Control (HVC) system uses hydraulic forces to open the valve while a mechanical spring is used for the closure. The system is fed by an hydraulic pump and two pressure regulators which provide two different pressure levels: a high pressure level (approximately 100 bar) for the pilot stage and a low adjustable pressure level (from 20 to 90 bar) for the actuator power stage. The valve opening duration is controlled by varying the timing of the opening signal of the pilot stage; the valve lift is adjusted varying the oil pressure of the power stage. From a general point of view, the HVC system is an open loop device for engine valve actuation.
Technical Paper

Numerical Analysis of a New Concept Variable Valve Actuation System

2006-09-14
2006-01-3008
The present work concerns the analysis of a concept for a new variable valve actuation system for internal combustion engines, denoted HVC (Hydraulic Valve Control system). The system is an electro-hydraulic device which aims at minimizing the power consumption required for the valve actuation. Unlike lost motion devices, where the excess pumped oil is wasted in order to control the lift profile, the HVC system uses a reduced quantity of energy to ensure the actual lift profile. For that reason interesting potentialities to increase the global fuel conversion efficiency of the engine are expected, in addition to the benefits deriving from the control flexibility. The HVC system has been modeled by means of an hydraulic simulation tool, useful for the dynamic analysis of mechanical and hydraulic systems. In this work the main elements of the device will be described and their relevant modeling parameters will be discussed.
Technical Paper

Flow Characterization of a High Performance S.I. Engine Intake System - Part 1: Experimental Analysis

2003-03-03
2003-01-0623
In this work an experimental analysis is performed to evaluate the influence of different flow bench test conditions and system configurations on the flow characteristics in the intake system of a high performance 4-valve, SI Internal Combustion Engine: valve lift, test pressure drop, throttle valve aperture, throttle valve opening direction in respect to the intake system layout (i.e. clockwise/counterclockwise), presence of the tumble adaptor. To this aim, experimental tests are performed on a Ducati Corse racing engine cylinder head, by measuring the discharge coefficient and the tumble coefficient. The several experimental data obtained by combining the different operational and geometrical parameters are analysed and discussed.
X