Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Modeling the Pilot Injection and the Ignition Process of a Dual Fuel Injector with Experimental Data from a Combustion Chamber Using Detailed Reaction Kinetics

2018-09-10
2018-01-1724
The introduction of the so called Emission Controlled Areas within the IMO Tier III legislation forces manufacturers of maritime propulsion systems to adherence to stringent emission thresholds. Dual fuel combustion, which is characterized by the injection of a small amount of fuel oil to ignite a premixed natural gas air mixture, constitutes an option to meet this target. At high diesel substitution rates and very short pilot injection events, the injector is operated in the ballistic regime. This influences spray penetration, mixture formation and ignition behavior. In the present work, a seven-hole dual fuel injector was measured in a combustion chamber to provide data for the generation of a CFD model using the commercial code AVL FIRE®. The liquid and the vapor phase of the fuel spray were quantified by Mie-scattering and Schlieren-imaging technique for different chamber conditions.
Technical Paper

Characterizing Spray Propagation of GDI Injectors under Crossflow Conditions

2018-09-10
2018-01-1696
In DISI engines spray distribution and atomization directly influence mixture formation, the quality of combustion and the resulting emissions. Constant Volume Chambers (CVC) are commonly used to characterize sprays of gasoline injectors. The CVCs provide good optical access but the flow condition of the engine cannot be reproduced. Optically accessible engines in contrast deliver realistic flow conditions but have restricted optical access. In former investigations we compared the spray propagation of different injectors in constant volume chambers and in optical accessible engines. These results showed a clear difference of the spray propagation in the CVC and the engine, especially at high charge motion conditions in the engine. To find an appropriate way to investigate the impact of different charge motion a flow channel was built with adjustable crossflow velocities from 5-50 m/s. The spray propagation during the injection process was measured with high-speed shadowgraphy.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

The Impact of a Combustion Chamber Optimization on the Mixture Formation and Combustion in a CNG-DI Engine in Stratified Operation

2017-03-28
2017-01-0779
A previous study by the authors has shown an efficiency benefit of up to Δηi = 10 % for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine compared to the homogeneous stoichiometric operation with port fuel injection (PFI). While best efficiencies appeared at extremely lean operation at λ = 3.2, minimum HC emissions were found at λ = 2. The increasing HC emissions and narrow ignition time frames in the extremely lean stratified operation have given the need for a detailed analysis. To further investigate the mixture formation and flame propagation und these conditions, an optically accessible single-cylinder engine was used. The mixture formation and the flame luminosity have been investigated in two perpendicular planes inside the combustion chamber.
Technical Paper

Experimental Validation of Jet Fuel Surrogates in an Optical Engine

2017-03-28
2017-01-0262
Three jet fuel surrogates were compared against their target fuels in a compression ignited optical engine under a range of start-of-injection temperatures and densities. The jet fuel surrogates are representative of petroleum-based Jet-A POSF-4658, natural gas-derived S-8 POSF-4734 and coal-derived Sasol IPK POSF-5642, and were prepared from a palette of n-dodecane, n-decane, decalin, toluene, iso-octane and iso-cetane. Optical chemiluminescence and liquid penetration length measurements as well as cylinder pressure-based combustion analyses were applied to examine fuel behavior during the injection and combustion process. HCHO* emissions obtained from broadband UV imaging were used as a marker for low temperature reactivity, while 309 nm narrow band filtered imaging was applied to identify the occurrence of OH*, autoignition and high temperature reactivity.
Technical Paper

A Gasoline Fuelled Pre-Chamber Ignition System for Homogeneous Lean Combustion Processes

2016-10-24
2016-01-2176
Pre-chamber ignition systems enable the combustion of homogeneous lean mixtures in internal combustion engines with significantly increased thermal efficiency. Such ignition systems provide a much higher ignition energy compared to a common spark ignition by burning a small portion of the charge in a separate chamber, generating multiple ignition sites in the main combustion chamber and increasing the turbulent flame speed. Pre-chamber ignition systems are commonly used in large natural gas engines but the integration in automotive engines is not feasible so far due to the lack of suitable fuelling systems needed to keep the pre-chamber mixture stoichiometric at lean operation of the engine. Based on preliminary investigations we developed an ignition system with fuelled pre-chamber for automotive engines utilizing the available space for the conventional spark plug.
Technical Paper

Mixture Formation in a CNG-DI Engine in Stratified Operation

2015-09-06
2015-24-2474
In a study using a single-cylinder engine a significant potential in fuel efficiency and emission reduction was found for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine. The control of the mixture formation process appeared to be critical to ensure stable inflammation of the mixture. Therefore, optical investigations of the mixture formation were performed on a geometric equivalent, optically accessible single-cylinder engine to investigate the correlation of mixture formation and inflammability. The two optical measurement techniques infrared (IR) absorption and laser-induced fluorescence (LIF) were employed. Mid-wavelength IR absorption appeared to be qualified for a global visualization of natural gas injection; LIF allows to quantify the equivalence ratio inside a detection level. While LIF measurements require complex equipment, the IR setup consists merely of a black body heater and a mid-wavelength sensitive IR camera.
Technical Paper

Investigations on Gasoline Spray Propagation Behaviour Characteristic for Multihole Injectors

2014-10-13
2014-01-2732
Modern concepts of downsized DI gasoline engines set up high requirements on the injection system to meet the emission targets. The fundamental knowledge and understanding of spray propagation physics are essential for the development of nozzles and injection strategies, due to reduced displacements in combination with the continuing trend of elevated fuel pressures. A detailed analysis of micro- and macroscopic spray parameters was carried out using a multihole solenoid driven DI injector. The measurements were performed in a continuously scavenged pressure chamber with full optical access. Fuel pressure up to 38MPa and backpressures in a range from 0.03 - 0.2 MPa were varied. Optical investigations were done by Shadowgraphy imaging and Phase Doppler Anemometry. The combination of micro- and macroscopic spray results are used to discuss the propagation behaviour of gasoline spray.
Technical Paper

Investigations on an Injector for a Low Pressure Hydrogen Direct Injection

2014-10-13
2014-01-2699
Hydrogen engines represent an economic alternative to fuel cells for future energy scenarios based on Liquid Organic Hydrogen Carriers (LOHC). This scenario incorporates LOHCs to store hydrogen from fluctuating renewable energy sources and deliver it to decentralised power generation units. Hydrogen engines were deeply investigated in the past decade and the results show efficiencies similar to CI engines. Due to the low energy density and tendency towards pre-ignition of hydrogen, the key element to reach high efficiency and a safe operation is a direct injection of the hydrogen. Because high injection pressure is not available in practical applications or would reduce the possible driving range, a low injection pressure is favourable. The low density leads to large flow cross sections inside the injector, similar to CNG direct injectors. So far, some research CNG and hydrogen low pressure direct injectors were investigated, but no commercial injector is available.
Technical Paper

Systematic Investigation of the Influence of Ethanol Blending on Sooting Combustion in DISI Engines Using High-Speed Imaging and LII

2014-10-13
2014-01-2617
Modern direct injection spark ignition (DISI) engine concepts have the drawback of higher particulate matter emission as compared to port fuel injection concepts. Especially, when driven with biofuels, the operation of DISI engines requires a deeper insight into particulate formation processes. In this study a modern optical accessible DISI engine is used. Pure isooctane, ethanol, E20 (20vol% of ethanol in isooctane) and E85 were investigated as fuels. Simultaneous OH*-chemiluminescence and soot radiation imaging was conducted by a high-speed camera system in order to separate premixed combustion with the sooting combustion. Furthermore, a laser-induced incandescence (LII) sensor was used to measure exhaust elementary carbon mass concentration. Systematically, operation points were chosen, which correspondent to the main sooting mechanisms, poolfire, mixture inhomogeneities and global low air-fuel ratio. Furthermore, they were compared to a homogenous charge combustion strategy.
Journal Article

Methods of Evaluating and Mitigating NVH when Operating an Engine in Dynamic Skip Fire

2014-04-01
2014-01-1675
Cylinder deactivation is a technology seeing increased automotive deployment in light of more demanding fuel economy and emissions requirements. Examples of current production systems include GM's Active Fuel Management and Chrysler's Multi-Displacement System, both of which provide one fixed level of deactivation. Dynamic Skip Fire (DSF), in which the number of fired cylinders is continuously varied to match the torque demand, offers significantly increased fuel savings over a wider operating range than the current production systems. One of the biggest challenges in implementing cylinder deactivation is developing strategies to provide acceptable Noise, Vibration and Harshness (NVH); this paper discusses those challenges and the methodologies developed. This work covers theoretical root causes; proposed metrics to quantify the NVH level; algorithmic and physical mitigation methods; and both subjective and objective evaluation results.
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Technical Paper

Soot Formation of Different Diesel-Fuels Investigated by Chemical Luminescence and Laser Induced Incandescence

2013-10-14
2013-01-2667
Differences in thermo-physical parameters of fuels have high impact on the ignition, combustion and emission. Pure rapeseed FAME and diesel fuel with a cetane number of 60 have been compared to reference fuel. In an optical accessible vessel the fuels have been injected in order to investigate the spray, the ignition and soot formation. The high cetane number fuel showed similar behavior in spray phase to the reference fuel but the FAME fuel is more present at all operating points due to low volatile fuel components. The ignition and combustion process was investigated via chemical luminescence (CL) and laser induced incandescence (LII). In engine investigations a reduced ignition delay is detected in case of high cetane-number. The more sensitive optical techniques show differences in the combustion process. The ignition behavior of the reference fuel and the increased cetane number fuel were similar until the cetane increaser of the high cetane fuel came into effect.
Technical Paper

Investigations on a New Engine Concept for Small Hydrogen Power Generation Units Using LOHCs

2013-10-14
2013-01-2525
New energy scenarios for decentralised stationary energy supply based on Liquid Organic Hydrogen Carriers (LOHC) offer an attractive application for hydrogen engines and are a reason why hydrogen engines become topical again. Since hydrogen stored in LOHCs is released under ambient pressure and temperatures of over 200°C, compression and cooling of the hydrogen is needed, lowering the system's overall efficiency. Direct injection of hydrogen is advantageous due to its low volumetric energy density and the tendency towards pre-ignition. The development objective is an injection and combustion strategy for an engine in the performance category below 15 kW and the described fuel supply scenario. Therefore, an one dimensional simulation model of the engine and the hydrogen supplying compressor was built. The simulation results show a large influence of the injection pressure on engine efficiency due to the hydrogen supplying compressor.
Technical Paper

Time and Spatially Resolved Measurements of the Interaction between Liquid and Combusting Diesel Spray and Walls in Modern Diesel Engine Conditions

2013-09-08
2013-24-0063
Spray- and flame-wall interactions were investigated in a combustion chamber with diesel engine conditions. Several techniques were used to perform time and spatially resolved measurements of the liquid fuel phase, the premixed and diffusion-controlled combustion close to a wall. Different wall and gas temperature variations were investigated. It was found that low temperature variations of 25K have a significant impact on the combustion process: The lower the gas temperatures, the more liquid fuel and larger vortex structures arise. Also, the ignition delay is elongated. Consequently, the premixing period is longer, which can lead to the complete disappearance of sooty combustion. The colder the wall, larger cooling of the spray and larger vortex structures of liquid fuel on the wall develop. The ignition delays again are noticeable longer at the colder wall. Therefore, the premixing period is longer and there is also much less sooty combustion when the wall temperature is lower.
Journal Article

Investigation of Fuel Atomization and Evaporation of a DISI Injector Spray Under Homogeneous Charge Conditions

2013-04-08
2013-01-1597
Understanding the causal loop from injection to combustion in modern direct injection engines is essential to improve combustion and reduce emissions. In this work, the section from injection to fuel-evaporation in this causal loop was investigated using different optical measurement techniques, with a focus on drop size measurements using Phase Doppler Anemometry (PDA). One spray jet of a modern DISI multi-hole injector was investigated using gasoline RON 95 fuel and two single component alkane fuels (n-hexane / n-decane). In a first step the macroscopic spray formation and propagation of this spray jet were studied using a 2D-Mie-scattering technique in an optical injection chamber at homogenous charge DISI conditions. Furthermore, the droplet size distribution and mean diameter were determined spatially and temporally resolved for an ambient pressure of 0.3MPa and different ambient temperature (323K / 423K / 523K) conditions in the optical chamber using Phase Doppler Anemometry.
Journal Article

Design and Benefits of Dynamic Skip Fire Strategies for Cylinder Deactivated Engines

2013-04-08
2013-01-0359
Cylinder deactivation is a fuel consumption reduction technology for throttled internal combustion engines and other engines with thermal efficiency loss at part cylinder load. Recent production implementations, deactivating fixed sets of cylinders under part-load operating conditions, have had limited “fly zones” due to issues with drivability and noise, vibration and harshness (NVH). Dynamic skip firing, which in its ultimate form incorporates anytime, any-cylinder deactivation, continuously varies the number of firing cylinders, along with cylinder load, obtaining flexible control of acoustic and vibrational excitations from the engine, and allowing an expanded operational envelope with fewer drive ability/NVH issues. This paper outlines design considerations of dynamic skip fire operational strategies, discusses implementation of the system on a vehicle, and presents benefits to fuel economy and NVH.
Technical Paper

Investigation of the Interaction of Charge Motion and Residual Gas Concentration in an Optically Accessible SI Engine

2013-04-08
2013-01-0558
In spark-ignition engines, high exhaust gas recirculation (EGR) rates have demonstrated their potential in reducing fuel consumption and emissions. However, irregular combustion at high residual gas concentrations limits the EGR rates. The following study presents a strategy that has been developed to investigate the influence of complex charge motion on mixture formation and combustion for high residual gas concentrations with the aim of extending these limits. An optically accessible single-cylinder SI Engine with direct injection was used to measure the charge distribution by means of laser induced fluorescence (LIF). A special device inside the inlet pipe gave the possibility to generate a defined swirl motion overlaying a tumble motion given by the design of the inlet ports.
Journal Article

Time and Spatially Resolved Measurements of the Interaction of Combusting Diesel Spray and Walls with Elevated Temperatures

2012-09-10
2012-01-1726
The interaction between a combusting diesel spray and a wall at temperatures of 700K and 735K was investigated in a combustion chamber using optical measurement techniques. The temperatures were chosen as they appear in the range of the maximum piston surface temperatures of the latest production engines. Combustion was investigated with a dual camera setup, which is designed to take simultaneous pictures of the UV flame luminosity (FL_UV) and the visible flame luminosity (FL_VIS). The FL_UV is used to measure lean or stoichiometric combustion. The FL_VIS is capable of detecting the thermally excited soot. Mie scattering is used to study the liquid fuel phase. It was found that there is almost no FL_VIS signal visual in the 700K case, but a very strong signal in the 735K case. In general, one might expect that higher wall temperatures lead to an improved mixture formation and, consequently, lower soot production. However, the opposite was detected.
X