Refine Your Search

Topic

null

Search Results

Standard

Recommended Guidelines for Fatigue Testing of Elastomeric Materials and Components

2017-02-13
J1183_201702
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomers under conditions of dynamic stress and to provide guidance concerning laboratory procedures for determining the fatigue characteristics of elastomeric materials and fabricated elastomeric components.
Standard

Testing Dynamic Properties of Elastomeric Isolators

2017-02-09
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Elastomeric Bushing "TRAC" Application Code

2017-02-09
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Body Corrosion - A Comprehensive Introduction

2016-04-05
J1617_201604
The mechanism of automotive body corrosion is scientific, based on established laws of chemistry and physics. Yet there are many opinions related to the cause of body corrosion, not always based on scientific axioms. The purpose of this SAE Information Report is to present a basic understanding of the types of body corrosion, the factors that contribute to body corrosion, the testing procedures, evaluation of corrosion performance, and glossary of related terms.
Standard

Proving Ground Vehicle Corrosion Testing

2016-04-05
J1950_201604
The facilities used by domestic automotive manufacturers to provide accelerated corrosion aging of complete vehicles are described in general. The types of vehicles tested, general test methodology, and techniques used to determine test-to-field correlation are discussed. The different procedures used throughout the industry produce different results on various vehicle coatings, components, and systems. The key to successful interpretation of test results is a thorough understanding of the corrosion mechanisms involved and the effects of test limitations on these mechanisms.
Standard

Fatigue Testing Procedure for Suspension-Leaf Springs

2016-04-05
J1528_201604
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
Standard

Laboratory Cyclic Corrosion Test

2016-04-05
J2334_201604
The SAE J2334 lab test procedure should be used when determining corrosion performance for a particular coating system, substrate, process, or design. Since it is a field-correlated test, it can be used as a validation tool as well as a development tool. If corrosion mechanisms other than cosmetic or general corrosion are to be examined using this test, field correlation must be established.
Standard

Pneumatic Spring Terminology

2016-04-01
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Method for Evaluating the Paintable Characteristics of Automotive Sealers

2013-07-09
J1800_201307
This SAE Recommended Practice sets forth a method for testing and evaluating the paintable characteristics of automotive sealers. This document contains three samples preparation procedures: Method #1: Topcoat over cured primer and cured sealer Method #2: Topcoat over cured sealer Method #3: Topcoat over uncured sealer
Standard

Decorative Anodizing Specification for Automotive Applications

2013-03-28
J1974_201303
This SAE Recommended Practice is aimed at ensuring high-quality products of anodized aluminum automotive components in terms of durability and appearance. Decorative sulfuric acid anodizing has been well developed over the last several decades in the aluminum industry. Exterior and interior performance demonstrated that parts processed to this document meet long-term durability requirements. Since the treatment of processing variables is outside the scope of this document, it is important for applicators of this coating to develop an intimate knowledge of their process, and control all parameters that affect the quality of the end product. The use of techniques such as statistical process control (SPC), capability studies, design of experiments, process optimization, etc., are critical to produce material of consistently high quality.
Standard

Ball Stud and Socket Assembly - Test Procedures

2012-10-15
J193_201210
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

Recommended Practices for Design and Evaluation of Passenger and Light Truck Coolant Hose Clamped Joints

2003-11-07
J1697_200311
This SAE Recommended Practice covers recommended practices for design and evaluation of hose clamped joints primarily in automotive applications. It is intended to: (a) evaluate current joint designs, (b) compare existing designs, (c) aid in the development of new designs, (d) give objective results once weights are set, (e) rate the overall design and individual sections of design, and (f) encourage future research by industry and the OEM's.
Standard

Test Method for Evaluating the Sealing Capability of Hose Connections with a PVT Test Facility

2001-06-08
J1610_200106
This test method provides a standardized procedure for evaluating the sealing capability of a hose connection or any of the individual components of the connection with a pressure, vibration, and temperature (PVT) test facility. This test method consists of a test procedure which includes vibration and coolant flow (#1) and a similar test procedure specified without vibration or coolant flow (#2). Any test parameters, other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requestor.
Standard

Testing Dynamic Properties of Elastomeric Isolators

1999-05-01
J1085_199905
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Fuel and Oil Hoses

1998-06-01
J30_199806
This SAE Standard covers fuel and oil hose, coupled and uncoupled, for use with gasoline, oil, diesel fuel, lubrication oil, or the vapor present in either the fuel system or in the crankcase of internal combustion engines in mobile, stationary, and marine applications. Sections 7 and 11 cover hose intended to meet the demands of fuel injection systems. Sections 10 and 11 cover hose intended to meet low fuel permeation requirements. Section 3 covers Coupled and Uncoupled Synthetic Rubber Tube and Cover (SAE 30R2). Section 4 covers Lightweight Braided Reinforced Lacquer, Cement, or Rubber Covered Hose (SAE 30R3). Section 5 covers Wire Inserted Synthetic Rubber Tube and Cover (SAE 30R5). Section 6 covers Low-Pressure Coupled and Uncoupled Synthetic Rubber Tube and Cover (SAE 30R6), (SAE 30R7), (SAE 30R8). Section 7 covers Fuel Injection Hose Medium-Pressure Coupled and Uncoupled Synthetic Rubber Tube and Cover (SAE 30R9).
X