Refine Your Search

Topic

Search Results

Technical Paper

Interconnected Roll Stability Control System for Semitrucks with Double Trailers

2023-04-11
2023-01-0906
This paper provides a simulation analysis of a novel interconnected roll stability control (RSC) system for improving the roll stability of semitrucks with double trailers. Different from conventional RSC systems where each trailer’s RSC module operates independently, the studied interconnected RSC system allows the two trailers’ RSC systems to communicate with each other. As such, if one trailer’s RSC activates, the other one is also activated to assist in further scrubbing speed or intervening sooner. Simulations are performed using a multi-body vehicle dynamics model that is developed in TruckSim® and coupled with the RSC model established in Simulink®. The dynamic model is validated using track test data. The simulation results for a ramp steer maneuver (RSM) and sine-with-dwell (SWD) maneuver indicate that the proposed RSC system reduces lateral acceleration and rollover index for both trailers, decreasing the likelihood of wheel tip-up and vehicle rollover.
Technical Paper

Simulation Evaluation on the Rollover Propensity of Multi-Trailer Trucks at Roundabouts

2020-03-27
2020-01-5005
The main intent of this study is to provide a simulation analysis of rollover dynamics of multi-trailer commercial vehicles in roundabouts. The results are compared with conventional tractor-semitrailer with a single 53-ft trailer for roundabouts that are of typical configuration to those in the U.S. cities. The multi-trailer commercial vehicles that are considered in this study are the A-double trucks commonly operated in the U.S. roads with the trailer length of 28 ft, 33 ft, and 40 ft. The multi-body dynamic models for analyzing the rollover characteristics of the trucks in roundabouts are established in TruckSim®. The models are intended to be used to assess the maximum rollover indexes of each trailer combination subjected to various circulating speeds for two types of roundabouts, 140-ft single-lane and 180-ft double-lane.
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
Technical Paper

Pneumatically Balanced Heavy Truck Air Suspensions for Improved Roll Stability

2015-09-29
2015-01-2749
This study provides a simulation evaluation of the effect of maintaining balanced airflow, both statically and dynamically, in heavy truck air suspensions on vehicle roll stability. The model includes a multi-domain evaluation of the truck multi-body dynamics combined with detailed pneumatic dynamics of drive-axle air suspensions. The analysis is performed based on a detailed model of the suspension's pneumatics, from the main reservoir to the airsprings, of a new generation of air suspensions with two leveling valves and air hoses and fittings that are intended to increase the dynamic bandwidth of the pneumatic suspensions. The suspension pneumatics are designed such that they are able to better respond to body motion in real time. Specifically, this study aims to better understand the airflow dynamics and how they couple with the vehicle dynamics.
Technical Paper

Effects of Commercial Truck Configuration on Roll Stability in Roundabouts

2015-09-29
2015-01-2741
This paper presents the results of a study on the effect of truck configurations on the roll stability of commercial trucks in roundabouts that are commonly used in urban settings with increasing frequency. The special geometric layout of roundabouts can increase the risk of rollover in high-CG vehicles, even at low speeds. Relatively few in-depth studies have been conducted on rollover stability of commercial trucks in roundabouts. This study uses a commercially available software, TruckSim®, to perform simulations on four truck configurations, including a single-unit truck, a WB-67 semi-truck, the combination of a tractor with double 28-ft trailers, and the combination of a tractor with double 40-ft trailers. A single-lane and multilane roundabout are modeled, both with a truck apron. Three travel movements through the roundabouts are considered, including right turn, through-movement, and left turn.
Journal Article

Integrating Electromechanical Systems in Commercial Vehicles for Improved Handling, Stability, and Comfort

2014-09-30
2014-01-2408
The 2014 SAE Buckendale Lecture will address the past developments and challenges of electromechanical “smart” systems for improving commercial vehicles' functionality. Electromechanical systems combine traditional mechanical devices with electrical components to provide far higher degree of functionality and adaptability for improved vehicle performance. The significant advances in microprocessors and their widespread use in consumer products have promoted their implementation in various classes of vehicles, resulting in “smart” devices that can sense their operating environment and command an appropriate action for improved handling, stability, and comfort. The chassis and suspension application of electromechanical devices mostly relate to controllable suspensions and vehicle dynamic management systems, such as Electronic Stability Control.
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

2010-10-05
2010-01-1903
Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

A Methodology for Accounting for Uneven Ride Height in Soft Suspensions with Large Lateral Separation

2009-10-06
2009-01-2920
This study pertains to motion control algorithms using statistical calculations based on relative displacement measurements, in particular where the rattle space is strictly limited by fixed end-stops and a load leveling system that allows for roll to go undetected by the sensors. One such application is the cab suspension of semi trucks that use widely-spaced springs and dampers and a load leveling system that is placed between the suspensions, near the center line of the cab. In such systems it is possible for the suspension on the two sides of the vehicle to settle at different ride heights due to uneven loading or the crown of the road. This paper will compare the use of two moving average signals (one positive and one negative) to the use of one root mean square (RMS) signal, all calculated based on the relative displacement measurement.
Technical Paper

Semiactive Fuzzy Logic Control for Heavy Truck Primary Suspensions: Is it Effective?

2005-11-01
2005-01-3542
Using a simulation model, this study intends to provide a preliminary evaluation of whether semiactive dampers are beneficial to improving ride and handling in class 8 trucks. One of the great challenges in designing a truck suspension system is maintaining a good balance between vehicle ride and handling. The suspension components are often designed with great care for handling, while maintaining good comfort. For Class 8 trucks, the vehicle comfort is also greatly affected by the cab and seat suspensions. Dampers for passive suspensions are tuned “optimally,” using various metrics that the ride engineer may consider, for the condition in which the truck operates most frequently. In recent years, the popularity of semiactive dampers in passenger vehicles has prompted the possibility of considering them for class 8 trucks. In this study, the vehicle safety versus ride comfort trade-off is studied for a certain class of suspensions with semiactive fuzzy control.
Technical Paper

The Challenge of Designing a Semiactive Damper for Heavy Truck Seat Suspensions

2005-11-01
2005-01-3544
The close proximity of seat suspensions to human body presents several challenges in terms of the perception of the suspension forces by the vehicle operator. This is particularly true of the suspensions with time-varying forces, such as semiactive seat suspensions. The major challenge in such suspensions is changing the suspension force from one state to under, without causing excessive amounts of dynamic jerk. This paper looks into the cause of dynamic jerk in semiactive suspensions with skyhook control, and presents two alternative implementations of skyhook control, called “no-jerk skyhook,” and “skyhook function,” for the purpose of this study. An analysis of the relationship between absolute velocity of the sprung mass and the relative velocity across the suspension is used to show the damping force discontinuities that result from skyhook control.
Technical Paper

Field Study to Evaluate Driver Fatigue Performance in Air-Inflated Truck Seat Cushions - Objective Results

2005-04-11
2005-01-1008
This study reports the objective results from a project investigating the effectiveness of several newly proposed metrics to compare fatigue performance between two distinct truck seat cushions, specifically standard foam versus air-inflated cushions. The subjective results from this project have shown the drivers in our study prefer the air-inflated seat cushion over their normal foam cushion, and that air-inflated seat cushions provide advantages in terms of comfort, support, and fatigue [1]. This study aims to further explore the differences between these two different seat cushions by highlighting the differences in objective pressure distribution measurements. Road tests were performed using existing commercial trucks in the daily operations of Averitt Express. A retrofit air-inflated seat cushion was installed in the fleet's trucks, and the drivers were allowed to adjust to the seats over approximately one week.
Technical Paper

Dynamic Influence of Frame Stiffness on Heavy Truck Ride Evaluation

2004-10-26
2004-01-2623
This experimental study determines the effect of truck frame stiffness on truck ride, as measured by B-post vertical and fore-aft accelerations. After describing the test setup, the paper will describe the details of two truck frames that are used in a series of tests conducted on a class-8 truck in the laboratory. The frames that are used for the tests include what commonly is used in production trucks in North American markets (called “baseline” frame), and a frame that is 15% thinner (called “thin” frame). The test results, which are analyzed in frequency domain, are compared for the two frames. They indicate that the thin frame performs similar to the baseline frame when the truck is subjected to heave inputs. For roll inputs, the thin frame causes an increase in B-post accelerations, mostly at frequencies associated with the frame beaming and the primary (axle) suspension resonance.
Technical Paper

Field Study to Evaluate Driver Fatigue Performance in Air-Inflated Truck Seat Cushions - Subjective Results

2004-10-26
2004-01-2650
This study reports the subjective results from a project investigating the effectiveness of several newly proposed metrics to compare fatigue performance between two distinct truck seat cushions, specifically standard foam versus air-inflated cushions. We also highlight some of the fundamental differences between air-inflated and foam seat cushion based on driver's perceptions. Road tests were performed using existing commercial trucks in the daily operations of Averitt Express. A retrofit air-inflated seat cushion was installed in the fleet's trucks, and the drivers were allowed to adjust to the seats over approximately one week. After this adjustment period, twelve drivers rode on both the air-inflated seat cushion and their original foam seat cushion during their regularly scheduled routes. Surveys were collected throughout the test sessions and the truck seats were fitted with instrumentation to capture physical measurements of seat pressure distribution.
Technical Paper

Effect of Panhard Rod Cab Suspensions on Heavy Truck Ride Measurements

2004-10-26
2004-01-2710
This study provides an experimental account of the effect of panhard rod suspensions on heavy truck ride, as evaluated by the B-post vertical and fore-aft accelerations. After describing the test setup, the paper will describe the details of two rear cab suspensions that are commonly used in North American trucks. Cab suspensions with dampers or similar elements that are used to provide lateral forces at the rear of the cab (called “baseline” cab suspension for the purpose of this study) and those that use a lateral link with a torsion spring at one end-commonly called “panhard rod”-are the two classes of rear cab suspensions that are considered in this study. The tests are performed on a class 8 truck that is setup in the laboratory for the purpose of providing good test repeatability and conducting an accurate design of experiment. The test results, which are analyzed in frequency domain, are compared for the two cab suspensions.
Technical Paper

A Numerical Evaluation of the Suspension and Driveline Dynamic Coupling in Heavy Trucks

2004-10-26
2004-01-2711
This study provides a numerical evaluation of the dynamic coupling that exists between the powertrain, suspensions, and tire dynamics in class 8 trucks. The spatial dynamics of the driveline, including the offset angels that commonly exist in practice, are modeled along with a lumped-parameter representation of the suspension and tire dynamics in vertical, longitudinal, and torsional directions. The model is used to show how the suspension dynamics and the angle change that it causes in driveline geometry can affect the vibrations resulting from the powertrain. The numerical model is also used for a parametric study in which the effect of various suspension and powertrain parameters on the dynamic coupling that exists between the two is evaluated.
Technical Paper

Study of Semiactive Adaptive Control Algorithms with Magneto-Rheological Seat Suspension

2004-03-08
2004-01-1648
This paper presents a parametric study of two semiactive adaptive control algorithms through simulation: the non-model based skyhook control, and the newly developed model-based nonlinear adaptive vibration control. This study includes discussion of suspension model setup, dynamic analysis approach, and controller tuning. The simulation setup is from a heavy-duty truck seat suspension with a magneto-rheological (MR) damper. The dynamic analysis is performed in the time domain using sine sweep excitations without the need to linearize such a nonlinear semiactive system that is studied here. Through simulation, the effectiveness of both control algorithms is demonstrated for vibration isolation. The computation flops of the simulation in the SIMULINK environment are compared, and the adaptability is studied with respect to plant variations and different excitation profiles, both of which come across typically for vehicle suspension systems.
Technical Paper

Application of Time-Domain Identification Techniques for Evaluating Heavy Truck Dynamics

2003-11-10
2003-01-3413
The primary purpose of this paper is to evaluate how various time-domain system identification techniques, which have been successfully used for different dynamic systems, can be applied for identifying heavy truck dynamics. System identification is the process by which a model is constructed from prior knowledge of a system and a series of experimental data. The parameters obtained from the identification process can be used for developing or improving the mathematical representation of a physical system. In contrast to lighter vehicles, heavy trucks have considerably more flexible frames. The frame can exhibit beaming dynamics in a frequency range that is within the range of interest for evaluating the ride and handling aspects of the truck. Understanding the dynamic contributions of the truck frame is essential for improving the ride characteristics of a vehicle. This understanding is also needed for designing new frame configurations for the existing or new production trucks.
Technical Paper

On-Vehicle Evaluation of Heavy Truck Suspension Kinematics

2003-11-10
2003-01-3394
This paper presents the setup and test results for evaluating kinematics characteristics of heavy truck suspensions in their actual environment, while installed on the truck. The paper will provide the truck suspension kinematics that are important to the truck dynamics, namely vertical stiffness, roll stiffness, and roll steer. It also presents the nature of the hysteresis that commonly exists in heavy truck suspensions. Next, we present a detailed account of the issues that must be taken into consideration in practice, when measuring various kinematics aspects of a truck suspension. Using a successful laboratory setup for measuring kinematics of heavy truck suspensions, the paper provides an evaluation of a class 8 truck with a trailing arm suspension. The description of the setup provides the details of the instrumentation and means of actuation that are necessary for collecting good kinematics data.
Technical Paper

Laboratory Evaluation of Heavy Truck Dynamics: Are the Test Results Useful?

2003-11-10
2003-01-3395
This paper provides an insight into some of the benefits of evaluating heavy truck dynamics in the laboratory. Recognizing that the vast majority of ride and engineering tests that are commonly conducted on heavy trucks occur in the field or on test tracks, the paper shows that there is much to be gained from dynamic testing of a truck in the laboratory under proper conditions. Of course, the main reasons for considering laboratory testing are that the tests can be conducted a) at much lower costs than field testing, and b) in a much more repeatable manner. The argument against laboratory tests has always been that they may not represent the true dynamic environment that a truck would experience in revenue service. Some of the issues related to properly setting up a truck in the laboratory such that the experiments can relatively accurately emulate what occurs in the field are presented.
Technical Paper

A Comparative Analysis of Air-inflated and Foam Seat Cushions for Truck Seats

2002-11-18
2002-01-3108
A comprehensive comparison between an air-inflated seat cushion designed for truck seats and a commonly used foam cushion is provided, using a single-axis test rig designed for seat dynamic testing. Different types of tests were conducted in order to evaluate various aspects of each type of cushion; in terms of their response to narrowband (single frequency) dynamics, broadband input of the type that is commonly used in the trucking industry for testing seats, and a step input for assessing the damping characteristics of each cushion. The tests were conducted over a twelve-hour period—in four-hour intervals—measuring the changes that occur at the seat cushion over time and assessing how these changes can affect the metrics that are used for evaluating the cushions. The tests indicated a greater stiffening of the foam cushion over time, as compared with the air-inflated cushion that showed almost no change in stiffness when exposed to a static weight for twelve hours.
X