Refine Your Search

Topic

Author

Search Results

Technical Paper

Simulation Study of Cathode Spot Formation on Spark Plug Electrodes Leading to Electrode Erosion

2024-04-09
2024-01-2103
A multi-dimensional cathode spot generation model is proposed to study the interaction between the plasma arc and cathode surface of a spark plug during the ignition process. The model is focused on the instationary (high current) arc phase immediately following breakdown, and includes detailed physics for the phenomena during spot formation such as ion collision, thermal-field emission, and metal vaporization, to simulate the surface heat source, current density and surface pressure. The spot formation for a platinum cathode is simulated using the VOF (volume of fluid) model within FLUENT, where the local metal is melted and deformed by pressure differences on the surface. A random walk model has been integrated to consider the movement of the arc center, resulting in the formation of different types of spots.
Technical Paper

Effects of Spark Plug Operating Conditions on Electrode Erosion and Surface Deformation

2024-04-09
2024-01-2100
An experimental study of the spark ignition process for SI engines was conducted to study spark plug erosion and the effect of breakdown voltage/energy on electrode surface deformation. The experiments were conducted outside of an engine, in both a pressurized constant volume optical chamber and in a high-pressure vessel heated within a furnace with gas temperatures as high as 730°C. J-gap spark plugs designed for natural gas engines were studied at elevated temperature and under a range of pressures to investigate electrode wear characteristics. Both iridium-alloy and platinum-alloy cathode (center electrode) and anode (ground strap) spark plugs were investigated. In addition, single spark events were performed on polished platinum cathode surfaces to allow the visualization of craters from individual spark events in order to quantify how their size and shape were affected by energy deposition and breakdown characteristics.
Technical Paper

Multi-Dimensional Spark Ignition Model for Arc Propagation and Thermal Energy Deposition with Crossflow

2023-04-11
2023-01-0205
A multi-dimensional model of the spark ignition process for SI engines was developed as a user defined function (UDF) integrated into the commercial engine simulation software CONVERGE CFD. The model simulates spark plasma movement in an inert flow environment without combustion. The UT model results were compared with experiments for arc movement in a crossflow and also compared with calorimeter measurements of thermal energy deposition under quiescent conditions. The arc motion simulation is based on a mean-free-path physical model to predict the arc movement given the contours of the crossflow velocity through the gap and the interaction of the spatially resolved electric field with the electrons making up the arc. A further development is the inclusion of a model for the thermal energy deposition of the arc as it is stretched by the interaction of the flow and the electric field.
Technical Paper

Spark Discharge Characteristics for Varying Spark Plug Geometries and Gas Compositions

2022-03-29
2022-01-0437
Spark discharge properties were studied and characterized for varying gas compositions and spark plug geometries using a spark calorimeter and constant volume optical vessel. Two different 18 mm natural gas engine spark plugs were used in the experiments. All measurements were recorded under quiescent conditions and with a spark gap of 0.30 mm. The spark plug calorimeter was used for measuring thermal energy deposition to the gas for gas compositions of nitrogen, a stoichiometric mixture of nitrogen and methane, a stoichiometric mixture of nitrogen and methane diluted with 30% carbon dioxide by volume, and for air. Other measurements of interest included breakdown voltage, electrical energy delivered to the spark gap, electrical-to-thermal energy conversion efficiency, and spark duration, for pressures up to 28 bar at 300 K. The optical vessel was used for the combusting mixture of stoichiometric air and methane at pressures up to 28 bar.
Journal Article

A Simulation Study on the Transient Behavior of a Gasoline Direct Injection Engine under Cold Start Conditions

2022-03-29
2022-01-0401
The cold start process is critical to control the emissions in a gasoline direct injection (GDI) engine. However, the optimization is very challenging due to the transient behavior of the engine cold start. A series of engine simulations using CONVERGE CFD™ were carried out to show the detailed process in the very first firing event of a cold start. The engine operating parameters used in the simulations, such as the transient engine speed and the fuel rail pressure (FRP), came from companion experiments. The cylinder pressure traces from the simulations were compared with experiments to help validate the simulation model. The effects of variation of the transient parameters on in-cylinder mixture distribution and combustion are presented, including the effects of the rapidly changing engine speed, the slowly vaporized fuel due to the cold walls, and the low FRP during the first firing cycle of a 4-cylinder engine. Comparison was also made with non-transient steady state operation.
Technical Paper

Spark Ignition Discharge Characteristics under Quiescent Conditions and with Convective Flows

2021-09-21
2021-01-1157
The arc characteristics and discharge behavior of a representative inductive spark ignition system were characterized with a spark plug calorimeter and a constant volume vessel used to create high-pressure crossflow velocities through the gap of the spark plug. A 14 mm diameter natural gas engine spark plug was used for the measurements. The discharges were into a non-combusting gas, primarily nitrogen. The spark plug calorimeter was used to determine the electrical-to-thermal energy conversion in the spark gap under quiescent conditions, while the constant volume vessel was used to study ignition arc structure in convective crossflows and imaged with a high-speed camera. Topics included the effect of crossflow velocity, pressure (up to 20 bar at 300 K), and gap distance on breakdown voltage, arc duration and delivered electrical energy. Also of interest was the amount of remaining electrical energy on the coil versus spark duration in a cross flow.
Technical Paper

Multi-Dimensional Spark Ignition Model with Distributed Energy Input and Integrated Circuit Model

2021-04-06
2021-01-0405
A multi-dimensional model of the spark ignition process for SI engines was developed as a user defined function (UDF) integrated into the commercial engine simulation software CONVERGE™ CFD. For the present research, the model simulated spark plasma development in an inert flow environment without combustion. The UT model results were then compared with experiments. The UT CONVERGE CFD-based model includes an electrical circuit sub-model that couples the primary and secondary sides of an inductive ignition system to predict arc voltage and current, from which the transient delivered electrical energy to the gap can be determined. Experimentally measured values of the arc resistance and spark plug calorimeter measurements of the efficiency of electrical to thermal energy conversion in the gap were used to determine the thermal energy delivered to the gas in the spark gap for different pressures and gap distances.
Technical Paper

Testing the Rotating Liner Engine: Over 30% Reduction in Diesel Engine Fuel Consumption at Idle Conditions

2021-04-06
2021-01-0448
The Rotating Liner Engine (RLE) is a design concept for internal combustion engines, where the cylinder liner rotates at a surface speed of 2-4 m/s in order to assist piston ring lubrication. The metal-to-metal contact/boundary friction that exists close to the piston reversal area becomes a significant source of energy loss when the gas pressure that loads the piston rings and skirts is high. Reduction in mechanical friction has a direct impact on brake thermal efficiency. This paper describes fuel consumption measurements of our prototype single cylinder engine, compared to a baseline at idle. The reduction in fuel flow is of the order of 40% when extrapolated to a complete engine. The margin in friction reduction is expected to grow at increasing load, but reduce at increasing speeds. Our earlier models estimated idle fuel consumption reduction to about 25%, at full load about 3.5%, for a Heavy-Duty FTP 6.8 %, and may have been conservative.
Technical Paper

Experimental and Modeling Study of Spark Plug Electrode Heat Transfer and Thermal Energy Deposition

2021-04-06
2021-01-0480
Spark plug electrode heat transfer and its relationship with the thermal energy deposition from the spark plasma to the gas in the spark gap was studied under quiescent non-combusting conditions. The thermal energy deposition to the gas (N2) was measured with a spark plug calorimeter as a function of pressure, up to 30 bar. The measurements were carried out for two gap distances of 0.3 mm and 0.9 mm, for three nominally identical spark plugs having different electrode surface area and/or surface thermal conductivity. The unmodified baseline spark plug had a nickel center electrode (cathode) 2.0 mm in diameter, the first modified spark plug had both the ground and center electrodes shaved to a diameter of approximately 0.5 mm, and the second modified spark plug had copper inserts bonded to both electrodes. The experimental results were compared with multi-dimensional simulations of the conjugate heat transfer to the gas and to the metal electrodes, conducted using CONVERGE CFD.
Journal Article

Quantitative Analysis of Gasoline Direct Injection Engine Emissions for the First 5 Firing Cycles of Cold Start

2021-04-06
2021-01-0536
A series of cold start experiments using a 2.0 liter gasoline turbocharged direct injection (GTDI) engine with custom controls and calibration were carried out using gasoline and iso-pentane fuels, to obtain the cold start emissions profiles for the first 5 firing cycles at an ambient temperature of 22°C. The exhaust gases, both emitted during the cold start firing and emitted during the cranking process right after the firing, were captured, and unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start were analyzed and quantified. The HCs emitted during gasoline-fueled cold starts was found to reduce significantly as the engine cycle increased, while CO and CO2 emissions were found to stay consistent for each cycle. Crankcase ventilation into the intake manifold through the positive-crankcase ventilation (PCV) valve system was found to have little effect on the emissions results.
Technical Paper

Effects of Injection Pressure, Intake Throttling, and Cylinder Deactivation on Fuel Consumption and Emissions for a Light Duty Diesel Engine at Idle Conditions

2020-04-14
2020-01-0303
The continuing growth of urban population centers has led to increased traffic congestion for which vehicles can spend considerable periods at low speed/low load and idle conditions. For light-duty diesel vehicles, these low load conditions are characterized by low engine exhaust temperatures (~100oC). Exhaust temperatures can be too low to maintain the activity of the catalytic exhaust aftertreatment devices (usually need >~200oC) which can lead to high emissions that contribute to deteriorating urban air quality. This study is a follow-on to two previous studies on the effects of throttling, post-injection, and cylinder deactivation (CDA) on light-duty diesel engine exhaust temperatures and emissions. The focus of the present study is on fuel consumption, exhaust temperatures, and emissions with and without cylinder deactivation or with fuel cutout, and the sensitivity to or effects of fuel rail pressure, along with observations of apparent idle engine friction.
Journal Article

A Novel Technique for Measuring Cycle-Resolved Cold Start Emissions Applied to a Gasoline Turbocharged Direct Injection Engine

2020-04-14
2020-01-0312
There is keen interest in understanding the origins of engine-out unburned hydrocarbons emitted during SI engine cold start. This is especially true for the first few firing cycles, which can contribute disproportionately to the total emissions measured over standard drive cycles such as the US Federal Test Procedure (FTP). This study reports on the development of a novel methodology for capturing and quantifying unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start. The method was demonstrated by applying it to a 4 cylinder 2 liter GTDI (Gasoline Turbocharged Direct Injection) engine for cold start conditions at an ambient temperature of 22°C. For this technique, the entirety of the engine exhaust gas was captured for a predetermined number of firing cycles.
Technical Paper

On-Track Measurement of Road Load Changes in Two Close-Following Vehicles: Methods and Results

2019-04-02
2019-01-0755
As emerging automated vehicle technology is making advances in safety and reliability, engineers are also exploring improvements in energy efficiency with this new paradigm. Powertrain efficiency receives due attention, but also impactful is finding ways to reduce driving losses in coordinated-driving scenarios. Efforts focused on simulation to quantify road load improvements require a sufficient amount of background validation work to support them. This study uses a practical approach to directly quantify road load changes by testing the coordinated driving of two vehicles on a test track at various speeds (64, 88, 113 km/h) and vehicle time gaps (0.3 to 1.3 s). Axle torque sensors were used to directly measure the load required to maintain steady-state speeds while following a lead vehicle at various gap distances.
Technical Paper

The Rotating Liner Engine (RLE) Diesel Prototype: Preliminary Testing

2019-01-15
2019-01-0084
The Rotating Liner Engine (RLE) concept is a design concept for internal combustion engines, where the cylinder liner rotates at a surface speed of 2-4 m/s in order to assist piston ring lubrication. Specifically, we have evidence from prior art and from our own research that the above rotation has the potential of eliminating the metal-to-metal contact/boundary friction that exists close to the piston reversal areas. This frictional source becomes a significant energy loss, especially in the compression/expansion part of the cycle, when the gas pressure that loads the piston rings and skirts is high. This paper describes the Diesel RLE prototype constructed from a Cummins 4BT and the preliminary observations from initial low load testing. The critical technical challenge, namely the rotating liner face seal, appears to be operating with negligible gas leakage and within the hydrodynamic lubrication regime for the loads tested (peak cylinder pressures of the order of 80 bar).
Technical Paper

A Full-Cycle Multi-Zone Quasi-Dimensional Direct Injection Diesel Engine Model Based on a Conceptual Model Developed from Imaging Experiments

2017-03-28
2017-01-0537
A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Technical Paper

Performance and Efficiency Assessment of a Production CNG Vehicle Compared to Its Gasoline Counterpart

2014-10-13
2014-01-2694
Two modern light-duty passenger vehicles were selected for chassis dynamometer testing to evaluate differences in performance end efficiency resulting from CNG and gasoline combustion in a vehicle-based context. The vehicles were chosen to be as similar as possible apart from fuel type, sharing similar test weights and identical driveline configurations. Both vehicles were tested over several chassis dynamometer driving cycles, where it was found that the CNG vehicle exhibited 3-9% lower fuel economy than the gasoline-fueled subject. Performance tests were also conducted, where the CNG vehicle's lower tractive effort capability and longer acceleration times were consistent with the lower rated torque and power of its engine as compared to the gasoline model. The vehicles were also tested using quasi-steady-state chassis dynamometer techniques, wherein a series of engine operating points were studied.
Journal Article

Validating Volt PHEV Model with Dynamometer Test Data Using Autonomie

2013-04-08
2013-01-1458
The first commercially available Plug-In Hybrid Electric Vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in December 2010. The Volt's powertrain architecture provides four modes of operation, including two that are unique and maximize the Volt's efficiency and performance. The electric transaxle has been specially designed to enable patented operating modes both to improve the electric driving range when operating as a battery electric vehicle and to reduce fuel consumption when extending the range by operating with an internal combustion engine (ICE). However, details on the vehicle control strategy are not widely available because the supervisory control algorithm is proprietary. Since it is not possible to analyze the control without vehicle test data obtained from a well-designed Design-of-Experiment (DoE), a highly instrumented GM Volt, including thermal sensors, was tested at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF).
Journal Article

Developing a Utility Factor for Battery Electric Vehicles

2013-04-08
2013-01-1474
As new advanced-technology vehicles are becoming more mainstream, analysts are studying their potential impact on petroleum use, carbon emissions, and smog emissions. Determining the potential impacts of widespread adoption requires testing and careful analysis. PHEVs possess unique operational characteristics that require evaluation in terms of actual in-use driving habits. SAE J2841, “Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data,” published by SAE in 2009 with a revision in 2010, is a guide to using DOT's National Household Travel Survey (NHTS) data to estimate the relative split between driving in charge-depleting (CD) mode and charge-sustaining (CS) mode for a particular PHEV with a given CD range. Without this method, direct comparisons of the merits of various vehicle designs (e.g., efficiency and battery size) cannot be made among PHEVs, or between PHEVs and other technologies.
Technical Paper

Design Details of the Compression Ignition Rotating Liner Engine. Reducing Piston Assembly Friction and Ring/Liner Wear in Heavy-Duty Diesel Engines

2012-09-24
2012-01-1963
The Rotating Liner Engine (RLE) is an engine design concept where the cylinder liner rotates in order to reduce piston assembly friction and liner/ring wear. The reduction is achieved by the elimination of the mixed and boundary lubrication regimes that occur near TDC. Prior engines for aircraft developed during WW2 with partly rotating liners (Sleeve Valve Engines or SVE) have exhibited reduction of bore wear by factor of 10 for high BMEP operation, which supports the elimination of mixed lubrication near the TDC area via liner rotation. Our prior research on rotating liner engines experimentally proved that the boundary/mixed components near TDC are indeed eliminated, and a high friction reduction was quantified compared to a baseline engine. The added friction required to rotate the liner is hydrodynamic via a modest sliding speed, and is thus much smaller than the mixed and boundary friction that is eliminated.
X