Refine Your Search

Topic

Author

Search Results

Journal Article

Eco-Driving Strategies for Different Powertrain Types and Scenarios

2019-10-22
2019-01-2608
Connected automated vehicles (CAVs) are quickly becoming a reality, and their potential ability to communicate with each other and the infrastructure around them has big potential impacts on future mobility systems. Perhaps one of the most important impacts could be on network wide energy consumption. A lot of research has already been performed on the topic of eco-driving and the potential fuel and energy consumption benefits for CAVs. However, most of the efforts to date have been based on simulation studies only, and have only considered conventional vehicle powertrains. In this study, experimental data is presented for the potential eco-driving benefits of two specific intersection approach scenarios, for four different powertrain types.
Technical Paper

On-Track Measurement of Road Load Changes in Two Close-Following Vehicles: Methods and Results

2019-04-02
2019-01-0755
As emerging automated vehicle technology is making advances in safety and reliability, engineers are also exploring improvements in energy efficiency with this new paradigm. Powertrain efficiency receives due attention, but also impactful is finding ways to reduce driving losses in coordinated-driving scenarios. Efforts focused on simulation to quantify road load improvements require a sufficient amount of background validation work to support them. This study uses a practical approach to directly quantify road load changes by testing the coordinated driving of two vehicles on a test track at various speeds (64, 88, 113 km/h) and vehicle time gaps (0.3 to 1.3 s). Axle torque sensors were used to directly measure the load required to maintain steady-state speeds while following a lead vehicle at various gap distances.
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Journal Article

Validating Volt PHEV Model with Dynamometer Test Data Using Autonomie

2013-04-08
2013-01-1458
The first commercially available Plug-In Hybrid Electric Vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in December 2010. The Volt's powertrain architecture provides four modes of operation, including two that are unique and maximize the Volt's efficiency and performance. The electric transaxle has been specially designed to enable patented operating modes both to improve the electric driving range when operating as a battery electric vehicle and to reduce fuel consumption when extending the range by operating with an internal combustion engine (ICE). However, details on the vehicle control strategy are not widely available because the supervisory control algorithm is proprietary. Since it is not possible to analyze the control without vehicle test data obtained from a well-designed Design-of-Experiment (DoE), a highly instrumented GM Volt, including thermal sensors, was tested at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF).
Technical Paper

Ambient Temperature (20°F, 72°F and 95°F) Impact on Fuel and Energy Consumption for Several Conventional Vehicles, Hybrid and Plug-In Hybrid Electric Vehicles and Battery Electric Vehicle

2013-04-08
2013-01-1462
This paper determines the impact of ambient temperature on energy consumption of a variety of vehicles in the laboratory. Several conventional vehicles, several hybrid electric vehicles, a plug-in hybrid electric vehicle and a battery electric vehicle were tested for fuel and energy consumption under test cell conditions of 20°F, 72°F and 95°F with 850 W/m₂ of emulated radiant solar energy on the UDDS, HWFET and US06 drive cycles. At 20°F, the energy consumption increase compared to 72°F ranges from 2% to 100%. The largest increases in energy consumption occur during a cold start, when the powertrain losses are highest, but once the powertrains reach their operating temperatures, the energy consumption increases are decreased. At 95°F, the energy consumption increase ranges from 2% to 70%, and these increases are due to the extra energy required to run the air-conditioning system to maintain 72°F cabin temperatures.
Technical Paper

Design Details of the Compression Ignition Rotating Liner Engine. Reducing Piston Assembly Friction and Ring/Liner Wear in Heavy-Duty Diesel Engines

2012-09-24
2012-01-1963
The Rotating Liner Engine (RLE) is an engine design concept where the cylinder liner rotates in order to reduce piston assembly friction and liner/ring wear. The reduction is achieved by the elimination of the mixed and boundary lubrication regimes that occur near TDC. Prior engines for aircraft developed during WW2 with partly rotating liners (Sleeve Valve Engines or SVE) have exhibited reduction of bore wear by factor of 10 for high BMEP operation, which supports the elimination of mixed lubrication near the TDC area via liner rotation. Our prior research on rotating liner engines experimentally proved that the boundary/mixed components near TDC are indeed eliminated, and a high friction reduction was quantified compared to a baseline engine. The added friction required to rotate the liner is hydrodynamic via a modest sliding speed, and is thus much smaller than the mixed and boundary friction that is eliminated.
Technical Paper

Coastdown Coefficient Analysis of Heavy-Duty Vehicles and Application to the Examination of the Effects of Grade and Other Parameters on Fuel Consumption

2012-09-24
2012-01-2051
To perform coastdown tests on heavy-duty trucks, both long acceleration and coasting distances are required. It is very difficult to find long flat stretches of road to conduct these tests; for a Class 8 truck loaded to 80,000 lb, about 7 miles of road is needed to complete the coastdown tests. In the present study, a method for obtaining coastdown coefficients from data taken on a road of variable grade is presented. To this end, a computer code was written to provide a fast solution for the coastdown coefficients. Class 7 and Class 8 trucks were tested with three different weight configurations: empty, “cubed-out” (fully loaded but with a payload of moderate density), and “weighed-out” (loaded to the maximum permissible weight).
Journal Article

Design of an On-Road PHEV Fuel Economy Testing Methodology with Built-In Utility Factor Distance Weighting

2012-04-16
2012-01-1194
As vehicle technology progresses to new levels of sophistication, so too, vehicle test methods must evolve. This is true for analytical testing in a laboratory and for on-road vehicle testing. Every year since 1993, the U.S. Department of Energy (DOE) and original equipment manufacturer (OEM) sponsors have organized a series of competitions featuring advanced hybrid electric vehicle (HEV) technology to develop and promote DOE goals in fuel savings and alternative fuel usage. The competition has evolved over many years and has included many alternative fuels feeding the prime mover (including hydrogen fuel cells). EcoCAR turned its focus to plug-in hybrid electric vehicles (PHEVs) and it was quickly realized that to keep using on-road testing methods to evaluate fuel and electricity consumption, a new method needed to be developed that would properly weight depleting operation with the sustaining operation, using the established Utility Factor (UF) method.
Video

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

2011-11-08
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
Technical Paper

Comparison of an On-Board, Real-Time Electronic PM Sensor with Laboratory Instruments Using a 2009 Heavy-Duty Diesel Vehicle

2011-04-12
2011-01-0627
EmiSense Technologies, LLC (www.emisense.com) is commercializing its electronic particulate matter (PM) sensor that is based on technology developed at the University of Texas at Austin (UT). To demonstrate the capability of this sensor for real-time PM measurements and on board diagnostics (OBD) for failure detection of diesel particle filters (DPF), independent measurements were performed to characterize the engine PM emissions and to compare with the PM sensor response. Computational fluid dynamics (CFD) modeling was performed to characterize the hydrodynamics of the sensor's housing and to develop an improved PM sensor housing with reproducible hydrodynamics and an internal baffle to minimize orientation effects. PM sensors with the improved housing were evaluated in the truck exhaust of a heavy duty (HD) diesel engine tested on-road and on a chassis dynamometer at the University of California, Riverside (UCR) using their Mobile Emissions Laboratory (MEL).
Technical Paper

Evaluating the Effects of Restraint Systems on Four Wheel Drive Testing Methodologies: A Collaborative Effort between NVFEL and ANL

2009-04-20
2009-01-1522
Testing vehicles for emissions and fuel economy has traditionally been conducted with a single-axle chassis dynamometer. The 2006 SAE All Wheel Drive Symposium cited four wheel drive (4WD) and all wheel drive (AWD) sales as climbing from 20% toward 30% of a motor vehicle market share. With an increasing number of four wheel-drive vehicles being introduced to the market place, certification testing for emissions and fuel economy has been changed to allow both two wheel drive and four wheel drive testing [1]. As manufacturers plan to test these vehicles in this mode, test methods need to be developed to allow for these changes. This paper focuses on the tie down methods available for 4WD testing to determine possible effects of test methodologies on a traditional 4WD Vehicle and a hybrid vehicle.
Technical Paper

Drive Cycle Fuel Consumption Variability of Plug-In Hybrid Electric Vehicles Due to Aggressive Driving

2009-04-20
2009-01-1335
Previous studies and on-road driving by consumers have shown that Hybrid Electric Vehicle fuel economy is very dependent on driver demand in both vehicle speed and vehicle acceleration [1]. The emerging technology of Plug-In Hybrid Vehicles (PHEV) may prove to also be more sensitivity to aggressive driver demand as compared to conventional internal combustion engine vehicles. This is due to the exceptional ability of the PHEV to minimize fuel consumption at mid to low power levels by the significant use of electric propulsion which enables engine downsizing. As vehicle speed and acceleration increase so does the power demand on the powertrain. The fuel consumption is directly affected by this increase in power demand level. To examine the fuel consumption impact of changing driver characteristics on PHEV’s, testing is conducted on two vehicles (parallel PHEV and power-split PHEV) on a four wheel chassis dynamometer at Argonne’s Advanced Powertrain Research Facility.
Technical Paper

Electronic Particulate Matter Sensor – Mechanisms and Application in a Modern Light-Duty Diesel Vehicle

2009-04-20
2009-01-0647
An electronic particulate matter sensor (EPMS) developed at the University of Texas was used to characterize exhaust gases from a single-cylinder diesel engine and a light-duty diesel vehicle. Measurements were made during transient tip-in events with multiple sensor configurations in the single-cylinder engine. The sensor was operated in two modes: one with the electric field energized, and the other with no electric field present. In each mode, different characteristic signals were produced in response to a tip-in event, highlighting the two primary mechanisms of sensor operation. The sensor responded to both the natural charge of the particulate matter (PM) emitted from the engine, and was also found to create a signal by charging neutral particles. The characteristics of the two mechanisms of operation are discussed as well as their implications on the placement and operation of the sensor.
Technical Paper

Development of the Texas Drayage Truck Cycle and Its Use to Determine the Effects of Low Rolling Resistance Tires on the NOX Emissions and Fuel Economy

2009-04-20
2009-01-0943
Trucks operating in inter-modal (drayage) operation in and around port and rail terminals, are responsible for a large proportion of the emissions of NOX, which are problematic for the air quality of the Houston and Dallas/Ft. Worth metro areas. A standard test cycle, called the Texas Dray Truck Cycle, was developed to represent the operation of heavy-duty diesel trucks in dray operations. The test cycle reflects the substantial time spent at idle (~45%) and the high intensity of the on-road portions. This test cycle was then used in the SAE J1321 test protocol to evaluate the effect on fuel consumption and NOX emissions of retrofitting dray trucks with light-weight, low-rolling resistance wide-single tires. In on-track testing, a reduction in fuel consumption of 8.7% was seen, and NOX emissions were reduced by 3.8% with the wide single tires compared to the conventional tires.
Technical Paper

Further Development of an Electronic Particulate Matter Sensor and Its Application to Diesel Engine Transients

2008-04-14
2008-01-1065
This paper presents the latest developments in the design and performance of an electronic particulate matter (PM) sensor developed at The University of Texas at Austin (UT) and suitable, with further development, for applications in active engine control of PM emissions. The sensor detects the carbonaceous mass component of PM in the exhaust and has a time-resolution less than 20 (ms), allowing PM levels to be quantified for engine transients. Sample measurements made with the sensor in the exhaust of a single-cylinder light duty diesel engine are presented for both steady-state and transient operations: a steady-state correlation with gravimetric filter measurements is presented, and the sensor response to rapid increases in PM emission during engine transients is shown for several different tip-in (momentary increases in fuel delivery) conditions.
Technical Paper

Investigating Possible Fuel Economy Bias Due To Regenerative Braking in Testing HEVs on 2WD and 4WD Chassis Dynamometers

2005-04-11
2005-01-0685
Procedures are in place for testing emissions and fuel economy for virtually every type of light-duty vehicle with a single-axle chassis dynamometer, which is why nearly all emissions test facilities use single-axle dynamometers. However, hybrid electric vehicles (HEVs) employ regenerative braking. Thus, the braking split between the driven and non-driven axles may interact with the calculation of overall efficiency of the vehicle. This paper investigates the regenerative braking systems of a few production HEVs and provides an analysis of their differences in single-axle (2WD) and double-axle (4WD) dynamometer drive modes. The fuel economy results from 2WD and 4WD operation are shown for varied cycles for the 2000 Honda Insight, 2001 Toyota Prius, and the 2004 Toyota Prius. The paper shows that there is no evidence that a bias in testing an HEV exists because of the difference in operating the same hybrid vehicle in the 2WD and 4WD modes.
Technical Paper

Implementation of a Non-Intrusive In-Vehicle Engine Torque Sensor for Benchmarking the Toyota Prius

2005-04-11
2005-01-1046
Vehicle emissions and fuel economy testing applications rely on accurate sensors to track power flow and measure component efficiencies. A non-intrusive in-vehicle torque sensor has been implemented in a hybrid powertrain to directly measure engine torque. Previously used off-the-shelf torque sensors required additional mechanical space, and so chassis modifications were needed to accommodate the sensor, which potentially limited the vehicle to only dynamometer testing. The challenges in implementing this type of sensor in automotive environments are described in detail, as are sensor capabilities and test results.
Technical Paper

The Texas Diesel Fuels Project, Part 4: Fuel Consumption, Emissions, and Cost-Effectiveness of an Ultra-Low-Sulfur Diesel Fuel Compared to Conventional Diesel Fuels

2005-04-11
2005-01-1724
The Texas Department of Transportation (TxDOT) began using an ultra-low-sulfur, low aromatic, high cetane number diesel fuel (TxLED, Texas Low Emission Diesel) in June 2003. They initiated a simultaneous study of the effectiveness to reduce emissions and influence fuel economy of this fuel in comparison to 2D on-road diesel fuel used in both their on-road and off-road equipment. The study incorporated analyses for the fleet operated by the Association of General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel in their equipment. One off-road engine, two single-axle dump trucks, and two tandem-axle dump trucks were tested. The equipment tested included newer electronically-controlled diesels. The off-road engine was tested over the TxDOT Telescoping Boom Excavator Cycle. The dump trucks were tested using the “route” technique over the TxDOT Single-Axle Dump Truck Cycle or the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

Analysis of Factors that Affect the Performance of Railplugs

2005-04-11
2005-01-0252
As natural gas engines are designed to operate leaner and with increased boost pressure, durability of the spark plugs becomes problematic. Among the various new ignition devices that have been considered to solve some of the problems facing spark plugs, railplugs appear to hold clear advantages in some areas. There are two types of railplugs: coaxial rail and parallel rail. This paper reports the results of an experimental study of various parameters that affect the performance of parallel railplugs. Their performance was quantified by the distance that the arc traveled along the rails from the initiation point. Travel along the rails is thought to be an important performance metric because rail-travel limits excessive local wear and produces a distributed ignition source which can potentially reduce mixture inhomogeneity induced ignition problems.
Technical Paper

A New Ignitior for Large-Bore Natural Gas Engines - Railplug Design Improvement and Optimization

2005-04-11
2005-01-0249
It is a very challenging problem to reliably ignite extremely lean mixtures, especially for the low speed, high load conditions of large-bore natural gas engines. If these engines are to be use for the distributed power generation market, it will require operation with higher boost pressures and even leaner mixtures. Both place greater demands on the ignition system. The railplug is a very promising ignition system for lean burn natural gas engines with its high-energy deposition and high velocity plasma arc. It requires care to properly design railplugs for this new application, however. For these engines, in-cylinder pressure and mixture temperature are very high at the time of ignition due to the high boost pressure. Hot spots may exist on the electrodes of the ignitor, causing pre-ignition problems. A heat transfer model is proposed in this paper to aid the railplug design. The electrode temperature was measured in an operating natural gas engine.
X