Refine Your Search

Affiliation

Search Results

Journal Article

Obese Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts

2023-06-27
2022-22-0002
The American population is getting heavier and automated vehicles will accommodate unconventional postures. While studies replicating mid-size and upright fore-aft seated occupants are numerous, experiments with post-mortem human subjects (PMHS) with obese and reclined occupants are sparse. The objective of this study was to compare the kinematics of the head-neck, torso and pelvis, and document injuries and injury patterns in frontal impacts. Six PMHS with a mean body mass index of 38.2 ± 5.3 kg/m2 were equally divided between upright and reclined groups (seatback: 23°, 45°), restrained by a three-point integrated belt, positioned on a semi-rigid seat, and exposed to low and moderate velocities (15, 32 km/h). Data included belt loads, spinal accelerations, kinematics, and injuries from x-rays, computed tomography, and necropsy. At 15 km/h speed, no significant difference in the occupant kinematics and evidence of orthopedic failure was observed.
Technical Paper

Responses and Injuries to PMHS in Side-Facing and Oblique Seats in Horizontal Longitudinal Sled Tests per FAA Emergency Landing Conditions

2016-11-07
2016-22-0006
The objective of the present exploratory study is to understand occupant responses in oblique and side-facing seats in the aviation environment, which are increasingly installed in modern aircrafts. Sled tests were conducted using intact Post Mortem Human Surrogates (PMHS) seated in custom seats approximating standard aircraft geometry. End conditions were selected to represent candidate aviation seat and restraint configurations. Three-dimensional head center-of-gravity linear accelerations, head angular velocities, and linear accelerations of the T1, T6, and T12 spinous processes, and sacrum were obtained. Three-dimensional kinematics relative to the seat were obtained from retroreflective targets attached to the head, T1, T6, T12, and sacrum. All specimens sustained spinal injuries, although variations existed by vertebral level.
Technical Paper

Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia from Vertical Loading

2016-11-07
2016-22-0010
A new anthropomorphic test device (ATD) is being developed by the US Army to be responsive to vertical loading during a vehicle underbody blast event. To obtain design parameters for the new ATD, a series of non-injurious tests were conducted to derive biofidelity response corridors for the foot-ankle complex under vertical loading. Isolated post mortem human surrogate (PMHS) lower leg specimens were tested with and without military boot and in different initial foot-ankle positions. Instrumentation included a six-axis load cell at the proximal end, three-axis accelerometers at proximal and distal tibia, and calcaneus, and strain gages. Average proximal tibia axial forces for a neutral-positioned foot were about 2 kN for a 4 m/s test, 4 kN for 6 m/s test and 6 kN for an 8 m/s test. The force time-to-peak values were from 3 to 5 msec and calcaneus acceleration rise times were 2 to 8 msec.
Technical Paper

Oblique Lateral Impact Biofidelity Deflection Corridors from Post Mortem Human Surrogates

2013-11-11
2013-22-0016
The objective of the study was to determine the thorax and abdomen deflection-time corridors in oblique side impacts. Data were analyzed from Post Mortem Human Surrogate (PMHS) sled tests, certain aspects of which were previously published. A modular and scalable anthropometry-specific segmented load-wall system was fixed to the platform of the sled. Region-specific forces were recorded from load cells attached to the load-wall plates. The thorax and abdomen regions were instrumented with chestbands, and deflection contours were obtained. Biomechanical responses were processed using the impulse-momentum normalization method and scaled to the mid-size male mass, 76-kg. The individual effective masses of the thorax and abdomen were used to determine the scale factors in each sled test, thus using the response from each experiment. The maximum deflections and their times of attainments were obtained, and mean and plus minus one standard deviation corridors were derived.
Technical Paper

Thoraco-Abdominal Deflection Responses of Post Mortem Human Surrogates in Side Impacts

2012-10-29
2012-22-0002
The objective of the present study was to determine the thorax and abdomen deflections sustained by post mortem human surrogate (PMHS) in oblique side impact sled tests and compare the responses and injuries with pure lateral tests. Oblique impact tests were conducted using modular and non-modular load-wall designs, with the former capable of accommodating varying anthropometry. Tests were conducted at 6.7 m/s velocity. Deflection responses from chestbands were analyzed from 15 PMHS tests: five each from modular load-wall oblique, non-modular load-wall oblique and non-modular load-wall pure lateral impacts. The thorax and abdomen peak deflections were greater in non-modular load-wall oblique than pure lateral tests. Peak abdomen deflections were statistically significantly different while the upper thorax deflections demonstrated a trend towards significance.
Technical Paper

Region-Specific Deflection Responses of WorldSID and ES2-re Devices in Pure Lateral and Oblique Side Impacts

2011-11-07
2011-22-0013
The objective of this study was to determine region-specific deflection responses of the WorldSID and ES2-re devices under pure lateral and oblique side impact loading. A modular, anthropometry-specific load wall was used. It consisted of the Shoulder, Thorax, Abdomen, superior Pelvis, and inferior Pelvis plates, termed the STAPP load wall design. The two devices were positioned upright on the platform of a bench seat, and sled tests were conducted at 3.4, 6.7, and 7.5 m/s. Two chestbands were used on each dummy at the thoracic and abdominal regions. Internal sensors were also used. Effective peak deflections were obtained from the chestband contours. Based on the preselected lateral-most point/location on the pretest contour, “internal sensor-type” peak deflections were also obtained using chestband contours. In addition, peak deflection data were obtained from internal sensor records.
Technical Paper

Lower Cervical Spine Loading in Frontal Sled Tests Using Inverse Dynamics: Potential Applications for Lower Neck Injury Criteria

2010-11-03
2010-22-0008
Lower cervical spine injuries are more common in survivors of motor vehicle crashes sustaining neck trauma. Injury criteria are determined using upper neck loads in dummies although a lower neck load cell exists. Due to a paucity of lower neck data from post mortem human subject (PMHS) studies, this research was designed to determine the head-neck biomechanics with a focus on lower neck metrics and injuries. Sixteen frontal impact tests were conducted using five belted PMHS. Instrumentation consisted of a pyramid-shaped nine accelerometer package on the head, tri-axial accelerometer on T1, and uniaxial accelerometer on the sled. Three-dimensional kinematics of the head-neck complex were obtained using a 20-camera high-speed motion analysis system. Testing sequence was: low (3.6 m/s), medium (6.9 m/s), repeat low, and high (15.8 m/s) velocities. Trauma evaluations were made between tests. Testing was terminated upon confirmation of injuries.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2007-22-0014
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Characterizing Occipital Condyle Loads Under High-Speed Head Rotation

2005-11-09
2005-22-0002
Because of the need to evaluate anthropomorphic test device (ATD) biofidelity under high-head angular accelerations, the purpose of the present investigation was to develop appropriate instrumentation for intact post mortem human subject (PMHS) testing, validate the instrumentation, and obtain information to characterize the response of the head-neck complex under this loading scenario. A series of rigid-arm pendulum, inertially loaded ATD tests was conducted. Head and neck ATD hydraulic piston chin pull tests were conducted. Subsequently, a series of PMHS tests was conducted to derive the response of the human head-neck under high-rate chin loading. Finally, Hybrid III and THOR-NT ATD head-neck systems were evaluated under the same scenario as the PMHS. A parametric analysis for center of gravity (CG) location and accelerometer orientation determined that even small errors (± 3 mm or 2 degrees), produced errors in the force and moment calculations by as much as 17%.
Technical Paper

Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy with Rib Extensions (ES-2re)

2003-10-27
2003-22-0010
Forty-two side impact cadaver sled tests were conducted at 24 and 32 km/h impact speeds into rigid and padded walls. The post-mortem human subjects were instrumented with accelerometers on the ribs and spine and chest bands around the thorax and abdomen to characterize their mechanical response during the impact. Load cells at the wall measured the impact force at the level of the thorax, abdomen, pelvis, and lower extremities. The resulting injuries were determined through detailed autopsy and radiography. Rib fractures with or without associated hemo/pneumo thorax or flail chest were the most common injury with severity ranging from AIS=0 to 5. Full and half thorax deflections were computed from the chest band data. The cadaver test data was analyzed using ANOVA and logistic regression. The age of the subject at the time of death had influence on injury outcome while gender and mass of the subject had little or no influence on injury outcome.
Technical Paper

Response Corridors of Human Surrogates in Lateral Impacts

2002-11-11
2002-22-0017
Thirty-six lateral PMHS sled tests were performed at 6.7 or 8.9 m/s, under rigid or padded loading conditions and with a variety of impact surface geometries. Forces between the simulated vehicle environment and the thorax, abdomen, and pelvis, as well as torso deflections and various accelerations were measured and scaled to the average male. Mean ± one standard deviation corridors were calculated. PMHS response corridors for force, torso deflection and acceleration were developed. The offset test condition, when partnered with the flat wall condition, forms the basis of a robust battery of tests that can be used to evaluate how an ATD interacts with its environment, and how body regions within the ATD interact with each other.
Technical Paper

Experimental Determination of Adult and Pediatric Neck Scale Factors

2002-11-11
2002-22-0020
The purpose of this study was to determine scale factors for small, mid-size and large adults using a caprine model. In a previous study conducted in our lab, scaling relationships were developed to define cervical spine tolerance values of children using caprine specimens. In that study, tolerances were normalized with respect to an average adult. Because airbag-related injuries are associated with out-of-position children and small adult females, additional experimental data are needed to better estimate human tolerance. In the present study, cervical spine radiographs from the 5th, 50th and 95th percentile human adults were used to determine vertebral body heights for small, mid-size and large anthropometries. Mean human vertebral body heights were computed for each anthropometry and were normalized with respect to mid-size anthropometry.
Technical Paper

Mechanisms and Factors Involved in Hip Injuries During Frontal Crashes

2001-11-01
2001-22-0020
This study was conducted to collect data and gain insights relative to the mechanisms and factors involved in hip injuries during frontal crashes and to study the tolerance of hip injuries from this type of loading. Unembalmed human cadavers were seated on a standard automotive seat (reinforced) and subjected to knee impact test to each lower extremity. Varying combinations of flexion and adduction/abduction were used for initial alignment conditions and pre-positioning. Accelerometers were fixed to the iliac wings and twelfth thoracic vertebral spinous process. A 23.4-kg padded pendulum impacted the knee at velocities ranging from 4.3 to 7.6 m/s. The impacting direction was along the anteroposterior axis, i.e., the global X-axis, in the body-fixed coordinate system. A load cell on the front of the pendulum recorded the impact force. Peak impact forces ranged from 2,450 to 10,950 N. The rate of loading ranged from 123 to 7,664 N/msec. The impulse values ranged from 12.4 to 31.9 Nsec.
Technical Paper

Improved thorax behavior of the EUROSID and effects on thorax injury assessment, on the basis of pendulum impacts

2001-06-04
2001-06-0141
In 1989, the EUROSID-1 was accepted in the European regulation ECE-R95. After a steady period of use, an upgraded version of this dummy: ES-2 is now considered as a step towards harmonization of side impact occupant regulations. The upgrades to the dummy include, amongst others, a modification of its torso back plate and a change in rib module guidance (piston-cylinder), especially to overcome anomalous rib deflection responses referred to as ""flat-top.'' Presented here are results of lateral and oblique pendulum tests, conducted on the EUROSID-1 and ES-2 to verify the modified torso back plate and to study the responses of three proposed rib module designs for ES-2. Particularly, rib deflections, rib VC responses, and thorax force-deflection responses are analyzed. The current study primarily addresses sensitivity of the ES-2 thorax to oblique loading.
Technical Paper

Chestband Analysis of Human Tolerance to Side Impact

1997-11-12
973320
A series of 26 human cadaver tests with chestband instrumentation and accelerometers were completed to assess side impact injury tolerance. A Heidelberg-type sled test system was used with thorax, abdomen, and pelvic load plates. Tests were conducted at the Medical College of Wisconsin and through the Ohio State University College of Medicine at the NHTSA Vehicle Research and Test Center at two different velocities: 24 kph and 32 kph. Test conditions included rigid wall, padded wall, and pelvic offset. Accelerations were recorded at rib 4, rib 8, and T12. Up to three chestbands were placed on each surrogate. Chest deflections were derived by computing chest contours at every millisecond throughout the event. The derived chest deflection-time curves were differentiated to obtain velocity of chest compression. Injury criteria including ASA15N, TTI, normalized chest deflection, and VC were computed. Resulting injuries ranged from AIS = 0 to AIS = 5.
Technical Paper

Dynamic Axial Tolerance of the Human Foot-Ankle Complex

1996-11-01
962426
Axial loading of the calcaneus-talus-tibia complex is an important injury mechanism for moderate and severe vehicular foot-ankle trauma. To develop a more definitive and quantitative relationship between biomechanical parameters such as specimen age, axial force, and injury, dynamic axial impact tests to isolated lower legs were conducted at the Medical College of Wisconsin (MCW). Twenty-six intact adult lower legs excised from unembalmed human cadavers were tested under dynamic loading using a mini-sled pendulum device. The specimens were prepared, pretest radiographs were taken, and input impact and output forces together with the pathology were obtained using load cell data. Input impact forces always exceeded the forces recorded at the distal end of the preparation. The fracture forces ranged from 4.3 to 11.4 kN.
Technical Paper

Instrumentation of Human Surrogates for Side Impact

1996-11-01
962412
The purpose of this study was to investigate the use of the chestband in side impact conditions by conducting validation experiments, and evaluating its feasibility by conducting a series of human cadaver tests under side impact crash scenarios. The chestband validation tests were conducted by wrapping the device around the thorax section of the Side Impact Dummy at its uppermost portion. The anthropomorphic test device was seated on a Teflon pad on a platform to accept impact from the side via a pendulum system. Tests were conducted at 4.5, 5.7, and 6.7 m/sec velocities using round and flat impactors. Retroreflective targets were placed at each strain gauge channel on the edge of the chestband. The test was documented using a high-speed digital video camera operating at 4500 frames/sec. Deformation contours and histories were obtained using the chestband electronic signals in combination with the RBAND-PC software.
Technical Paper

Dynamic Characteristics of the Human Cervical Spine

1995-11-01
952722
This paper presents the experimental dynamic tolerance and the force-deformation response corridor of the human cervical spine under compression loading. Twenty human cadaver head-neck complexes were tested using a crown impact to the head at speeds from 2.5 m/s to 8 m/s. The cervical spine was evaluated for pre-alignment by using the concept of the stiffest axis. Mid cervical column (C3 to C5) vertebral body wedge, burst, and vertical fractures were produced in compression. Posterior ligament tears in the lower column occurred under flexion. Anterior longitudinal ligament tears and spinous process fractures occurred under extension. Mean values were: force at failure, 3326 N; deformation at failure, 18 mm; stiffness, 555 N/mm. The deformation at failure parameter was associated with the least variance and should describe the most accurate tolerance measure for the population as a whole.
Technical Paper

Thoracic Biomechanics with Air Bag Restraint

1993-11-01
933121
The objective of the present study was to determine the biomechanics of the human thorax in a simulated frontal impact. Fourteen unembalmed human cadavers were subjected to deceleration sled tests at velocities of nine or 13 m/s. Air bag - knee bolster, air bag - lap belt, and air bag - three-point belt restraint systems were used with the specimen positioned in the driver's seat. Two chest bands were used to derive the deformation patterns at the upper and lower thoracic levels. Lap and shoulder belt forces were recorded with seatbelt transducers. After the test, specimens were evaluated using palpation, radiography, and a detailed autopsy. Thoracic trauma was graded according to the Abbreviated Injury Scale based on autopsy findings. Peak thoracic deformations were normalized with respect to the initial chest depth to facilitate comparison between the specimens.
X