Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Theoretical Framework for Modeling Spot Welds under Various Types of Loading Conditions

2008-04-14
2008-01-1136
The theoretical framework and closed-form stress intensity factor solutions in terms of the structural stresses for spot welds under various types of loading conditions are presented based on elasticity theories and fracture mechanics. A mechanics description of loading conditions for a finite plate with a rigid inclusion is first presented. The loading conditions of interest are the resultant loads on the inclusion in a plate and the surface tractions on the lateral surface of a plate. The surface tractions on the lateral surface of the plate can be decomposed into a load-balanced part and a self-balanced part. The resultant loads on the inclusion and the self-balanced resultant loads on the lateral surface are then decomposed into various types of symmetric and anti-symmetric parts. Based on the elasticity theories, closed-form moment, force and stress solutions are derived for a plate with a rigid inclusion subjected to various types of loading conditions.
Journal Article

Closed-Form Stress Intensity Factor Solutions for Spot Welds in Various Types of Specimens

2008-04-14
2008-01-1141
Closed-form stress intensity factor solutions at the critical locations of spot welds in four types of commonly used specimens are obtained based on elasticity theories and fracture mechanics. The loading conditions for spot welds in the central parts of four types of specimens are first examined. The resultant loads on the weld nugget and the self-balanced resultant loads on the lateral surface of the central parts of the specimens are then decomposed into various types of symmetric and anti-symmetric parts. Closed-form structural stress and stress intensity factor solutions for spot welds under various types of loading conditions are then adopted from a recent work of Lin and Pan to derive new closed-form stress intensity factor solutions at the critical locations of spot welds in the four types of specimens.
Technical Paper

Failure Loads of Spot Friction Welds in Aluminum 6111-T4 Sheets under Quasi-Static and Dynamic Loading Conditions

2007-04-16
2007-01-0983
In this investigation, spot friction welds in aluminum 6111-T4 lap-shear specimens were tested under both quasi-static and dynamic loading conditions. Micrographs of the spot friction welds after testing were examined to understand the failure modes of spot friction welds in lap-shear specimens under different loading conditions. The micrographs indicate that the spot friction welds produced by this particular set of welding parameters failed in interfacial failure mode under both quasi-static and dynamic loading conditions. The load and displacement histories for lap-shear specimens were obtained under quasi-static and dynamic loading conditions at three different impact velocities. The failure loads of spot friction welds in lap-shear specimens under dynamic loading conditions are about 7% larger than those under quasi-static loading conditions.
Technical Paper

Fatigue Failures of Spot Friction Welds in Aluminum 6111-T4 Sheets Under Cyclic Loading Conditions

2006-04-03
2006-01-1207
Fatigue failures of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets under cyclic loading conditions are investigated in this paper. The paths of fatigue cracks near the spot friction welds are first discussed. A fatigue crack growth model based on the Paris law for crack propagation and the global and local stress intensity factors for kinked cracks is then adopted to predict the fatigue lives of these spot friction welds. The global stress intensity factors and the local stress intensity factors based on the recent published works for resistance spot welds in lap-shear specimens are used to estimate the local stress intensity factors for kinked cracks with experimentally determined kink angles. The results indicate that the fatigue life predictions based on the Paris law and the local stress intensity factors as functions of the kink length agree well with the experimental results.
Technical Paper

Analytic Solution of Mode I Stress Intensity Factor for Spot Welds in Lap-Shear Specimens

2006-04-03
2006-01-0535
The analytic solution of the mode I stress intensity factor for spot welds in lap-shear specimens is investigated based on the classical Kirchhoff plate theory for linear elastic materials. Approximate closed-form solutions for a finite square plate containing a rigid inclusion under counter bending conditions are first derived. Based on the J integral, the closed-form structural stress solution is used to develop the analytic solution of the mode I stress intensity factor for spot welds in lap-shear specimens of finite size. Finally, the analytic solution of the mode I stress intensity factor based on the stress solution for a finite square plate with an inclusion is compared with the results of the three-dimensional finite element computations for lap-shear specimens with various ratios of the specimen half width to the nugget radius.
Technical Paper

Fracture and Fatigue Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets

2005-04-11
2005-01-1247
In this paper, fracture and fatigue mechanisms of spot friction welds in aluminum 6111-T4 lap-shear specimens are investigated based on experimental observations. Optical and scanning electron micrographs of these spot friction welds before and after failure under quasi-static and cyclic loading conditions are examined. The micrographs show the fracture and fatigue mechanisms of spot friction welds under quasi-static and cyclic loading conditions. The experimental observations indicate that the fracture mechanisms depend on the microstructure and geometry of welds under quasi-static loading conditions. Under cyclic loading conditions, the fatigue mechanisms depend not only on the microstructure and geometry of welds but also on the load amplitudes.
Technical Paper

Investigation of Fatigue Lives of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets Based on Fracture Mechanics

2005-04-11
2005-01-1250
The fatigue lives of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets are investigated here. The paths of fatigue cracks near spot friction welds are first discussed. A fatigue crack growth model based on the Paris law for crack propagation and the local stress intensity factors for kinked cracks is then adopted to predict the fatigue lives of spot friction welds. The global and local stress intensity factors based on a recent work of Wang and Pan for resistance spot welds in lap-shear specimens are used to estimate the local stress intensity factors of kinked cracks with experimentally determined kink angles. The results indicate that the fatigue life predictions based on the Paris law and the local stress intensity factors as functions of the kink length agree well with the experimental results.
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 5754 Sheets

2005-04-11
2005-01-1256
Microstructures and failure mechanisms of spot friction welds (SFW) in aluminum 5754 lap-shear specimens were investigated. In order to study the effect of tool geometry on the joint strength of spot friction welds, a concave tool and a flat tool were used. In order to understand the effect of tool penetration depth on the joint strength, spot friction welds were prepared with two different penetration depths for each tool. The results indicated that the concave tool produced slightly higher joint strength than the flat tool. The joint strength did not change for the two depths for the flat tool whereas the joint strength slightly increases as the penetration depth increases for the concave tool. The experimental results show that the failure mechanism is necking and shearing for the spot friction welds made by both tools. The failure was initiated and fractured through the upper sheet under the shoulder indentation near the crack tip.
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets

2004-03-08
2004-01-1330
Microstructures and failure mechanisms of spot friction welds in aluminum 6111-T4 lap-shear specimens are investigated based on experimental observations. Two types of tools, a Type I tool with a flat tool shoulder and a Type II tool with a concave tool shoulder, were used to join the aluminum sheets with different processing parameters. Optical micrographs of the cross sections of spot friction welds made by the two types of tools in lap-shear specimens before and after failure are examined. These spot friction welds show the failure mode of nugget pullout under lap-shear loading conditions. However, the micrographs show different microstructures and failure mechanisms for spot friction welds made by the two types of tools with different processing parameters.
X