Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Future Engine Control Enabling Environment Friendly Vehicle

2011-04-12
2011-01-0697
The aim of this paper is to compile the state of the art of engine control and develop scenarios for improvements in a number of applications of engine control where the pace of technology change is at its most marked. The first application is control of downsized engines with enhancement of combustion using direct injection, variable valve actuation and turbo charging. The second application is electrification of the powertrain with its impact on engine control. Various architectures are explored such as micro, mild, full hybrid and range extenders. The third application is exhaust gas after-treatment, with a focus on the trade-off between engine and after-treatment control. The fourth application is implementation of powertrain control systems, hardware, software, methods, and tools. The paper summarizes several examples where the performance depends on the availability of control systems for automotive applications.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

MultiCore Benefits & Challenges for Automotive Applications

2008-04-14
2008-01-0989
This paper will give an overview of multicore in automotive applications, covering the trends, benefits, challenges, and implementation scenarios. The automotive silicon industry has been building multicore and multiprocessor systems for a long time. The reasons for this choice have been: increased performance, safety redundancy, increased I/O & peripheral, access to multiple architectures (performance type e.g. DSP) and technologies. In the past, multiprocessors have been mainly considered as multi-die, multi-package with simple interconnection such as serial or parallel busses with possible shared memories. The new challenge is to implement a multicore, micro-processor that combines two or more independent processors into a single package, often a single integrated circuit (IC). The multicores allow a computing device to exhibit some form of thread-level parallelism (TLP).
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Technical Paper

Key Factors in Improving Microcontroller Performance and Features

2006-10-16
2006-21-0006
The increasingly stringent requirements in relation to safety, fuel economy, emission reduction, and onboard diagnostics are pushing the automotive industry toward more innovative solutions and a rapid increase in microcontroller performance. This paper will list the key factors necessary to increase overall data throughput and provide the right features to satisfy the coming drivetrain requirements. The paper will address different aspects such as: microcontroller architecture, cores, memories, silicon technologies, assembly / packaging, and development tools. It will also present techniques to improve modularity, scalability and configurability that will offer a migration path to permit the evolution and even revolution of drivetrain electronics. Since quality and reliability requirements are among the most stringent of any application fields, the paper will outline the path to reach zero-defect products.
Technical Paper

Rapid Gasoline Powertrain System Design and Evaluation Using a Powertrain Starter Kit

2005-04-11
2005-01-0062
Prototyping of a complete powertrain controller is not generally permissible due to the large number of subsystems involved and the resources required in making the design a reality. The availability of a complete control system reference design at an early stage in the lifecycle can greatly enhance the quality of the system definition and allows early ideas to be prototyped in the application environment. This paper describes the implementation of such a reference design for a gasoline engine and gearbox management control system, integrated into robust housing which can be used for development in a prototype vehicle. The paper also outlines the powertrain subsystems involved, discusses how the system partitioning is achieved, shows the implementation of the partitioning into the physical hardware, and concludes with presenting the system benefits which can be realized.
Technical Paper

Sensor Signal Delivery

2005-04-11
2005-01-0043
The signal delivery and quality of sensor data is of growing importance for modern automotive control applications. Sensors tend to be calibrated subsystems that are designed to stay in a defined tolerance and thus can easily be modeled. Compared to this deterministic behavior the transmission channel is time variant due to EMC and aging of contacts for example. The use of analog signaling, which is the actual state of realization in many cases, is sensitive to the time variant effects mentioned before. This time variance is hard to consider for the control system development. In this paper we will analyze the role of the sensor in the signal supply chain and discuss approaches for digital sensor-ECU communication and their potential to establish a link, which allows neglecting low level effects of the channel.
Technical Paper

Automotive Sensors & Sensor Interfaces

2004-03-08
2004-01-0210
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems push the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration pass to evolution and even revolution of automotive Sensors and Sensor interfaces. The document will explore different architectures and partitioning. Sensor technologies such as magnetic field sensors based on the hall effect as well as bulk and surface silicon micro machined sensors will be mapped to automotive applications by examples. Functions such as self-test, self-calibration and self-repair will be developed.
Technical Paper

X-by-Wire: Opportunities, Challenges and Trends

2003-03-03
2003-01-0113
This paper will outline the results of a study performed to analyze the market introduction of x-by-wire applications in the context of weak global industry environment, technological and legislative challenges, standardization issues and end customer benefits. This paper attempts to provide a bird-view on influence factors and impacts for the x-by-wire market, including e.g. the end customer's acceptance and legal environment driving further development in specific areas. Further, major driving forces on semiconductor/component level will be outlined regarding e.g. pin-count, computation performance and heat dissipation, but also possible scenarios and solutions towards safe and efficient system design and partitioning.
Technical Paper

TTCAN from Applications to Products in Automotive Systems

2003-03-03
2003-01-0114
This paper outlines the results of a study performed to analyze the mission of TTCAN from applications to products for automotive systems. As commonly acknowledged communication is one of the key elements for future and even present systems such as an automobile. A dramatically increasing number of busses and gateways even in low- to midrange vehicles is putting significant burden upon the validation scenario as well as the cost. Accordingly, numerous new initiatives have been started worldwide in order to find solutions to this; some of them by the definition of enhanced or new protocols. This paper shall have a look particular on the new standard of TTCAN (time-triggered communication on CAN). This protocol is based on the CAN data link layer as specified in ISO 11898-1 and may use standardized CAN physical layers such as specified in ISO 11898-2 (high-speed transceiver) or in ISO 11898-3 (fault-tolerant low-speed transceiver).
Technical Paper

Semiconductor Solutions for Piezo Injector Systems

2003-03-03
2003-01-0710
Increasing fuel costs and emission regulations are driving the car manufacturers to develop powerful but efficient engines. The 3-liter car (3-liter/100 km fuel consumption → 80 miles/gallon) is one achievement of these developments. Beside the pure mechanics electronics for fuel and air management are getting the key element for further improvement. Direct Injected (DI) engines are the standard for Diesel and are looking very promising for Gasoline. This SAE paper will discuss the differences of the operation principle of a solenoid and a Piezo based injector as well as the impact and the requirements for the semiconductors on the ECU especially under respect of future emission standards. A solution from Infineon Technologies will be presented.
Technical Paper

Current Control Strategies for Quasi-Autonomous Gate Driver

2002-03-04
2002-01-0472
Infineon proposes a Quasi-Autonomous Gate Driver (QAGD) to manage an electrically actuated component, whether electromechanical, electromagnetic, or electrohydraulic. This paper examines some current control strategies that can be implemented within the QAGD, such as: Synchronous Sampling (SYSA), Hysteresis, Improved Synchronous Sampling-Hysteresis (ISSH), Suboscillation, Suboscillation with Back EMF Feedforward (SBEF) and Synchronous Control in Rotation Coordinates (SCRC). Analysis and simulation of these strategies indicate their advantages and disadvantages, which are then summarized in a comparison chart, from which the best solution for a given application can be determined. The QAGD IC proposed by Infineon adopts this solution by integrating the current controller and the driver unit for the MOSFETs in a single package. The inverter function can therefore be implemented using one QAGD and several MOSFETs, which greatly simplify the system and decrease the costs.
Technical Paper

Effective System Development Partitioning

2001-03-05
2001-01-1221
In terms of modern technical systems, the automotive sector is characterized by escalating complexity and functionality requirements. The development of embedded control systems has to meet highest demands regarding process-, time- and cost-optimization. Hence, the efficiency of software development becomes a crucial competitive advantage. Systems design engineers need effective tools and methods to achieve exemplary speed and productivity within the development phase. To obtain such tools and methods, semiconductor manufacturers and tool manufacturers must work closely together. Within the joint efforts of ETAS and Infineon, the software tool suite ASCET-SD was enhanced to generate efficient C code for Infineon's TriCore architecture mapped on ETAS's real-time operating system ERCOSEK. The processor interface to application & calibration tools was realized using the ETK probe based on a JTAG/Nexus link at very high bandwidth.
Technical Paper

AUDO Architecture A Solution to Automotive Micro-Controller Requirements

2000-03-06
2000-01-0145
The C166 family, based on a 16-bit core; it is nowadays an enormous success in automotive, in particular in PowerTrain. This component is the right answer for the automotive real time applications of today. It is with both, automotive customer requirements and a long automotive experience in semi-conductors that this new generation 32-bit family is borne. The objective of this document is to provide and comment on automotive requirements in terms of the new micro-controller, to show the benefits for the applications and explain how the AUDO architecture fulfils these requirements.
Technical Paper

TwinCAN - A New Milestone for Inter-Network Communication

2000-03-06
2000-01-0144
Recent trends in field bus applications, especially in the automotive section, show a very high demand for data exchange between decentralised, intelligent functional units and modules. These functional units can be grouped together to power train applications or body/convenience applications. In many cases, the coupling of local modules is done with one or more independent bus systems. The actual design and the partitioning of the modules strongly depend on application-specific requirements, such as the total amount of data to be transferred or the maximum of the tolerated latency in data delivery. A very powerful and fast field bus is the CAN bus (Controller Area Network), which supports transfers with data rates up to 1 Mbits/s. Due to the higher transmission speed and the standardized functionality, CAN is a very interesting alternative to and improvement on bus systems based on other protocols.
Technical Paper

Automatic Code Generator for Automotive Configurable I/O System

2000-03-06
2000-01-0554
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnostic systems are forcing the market to increase complexity. This complexity must not be a reason for slowing down the introduction of new systems. For efficiency, car manufacturers and system suppliers want to focus on their core competencies and leave the micro-controller complexity to silicon vendors. Competition forces system suppliers to jump to the most “function/cost” effective solution. For this reason it is very dangerous to move in the direction of specific solutions which require a large amount of effort to modify. Therefore the market goes in the direction of standards with clear interfaces. The approach presented overcomes these obstacles by introducing a Configurable I/O System (CIOS) layer. The CIOS encompasses basic software driver objects for engine management systems encapsulating the standard sensors and actuators.
X